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Abstract. In this paper, we consider the problem of representing graphs by trian-
gles whose sides touch. We present linear time algorithms for creating touching
triangles representations for outerplanar graphs, square grid graphs, and hexago-
nal grid graphs. The class of graphs with touching triangles representations is not
closed under minors, making characterization difficult. We do show that pairs of
vertices can only have a small common neighborhood, and we present a complete
characterization of the subclass of biconnected graphs that can be represented as
triangulations of some polygon.
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1 Introduction

Planar graphs are a widely studied class that includes naturally occurring subclasses
such as trees and outerplanar graphs. Typically planar graphs are drawn using the
node-link model, where vertices are represented by points and edges are represented
by line segments. Alternative representations, such as contact circles [5] and contact
triangles [8] have also been explored. In these representations, a vertex is a circle or
triangle, and an edge is represented by pairwise contact at a common point.

In this paper, we explore the case where vertices are polygons, with an edge when-
ever the sides of two polygons touch. Specifically, given a planar graphG = (V,E), we
would like to find a set of polygonsR such that there is bijection between V andR, and
two polygons touch non-trivially if and only if the corresponding vertices are adjacent
in G.

Note that, unlike the case of contact circle and contact triangle representations, two
polygons that share a common point are not considered adjacent. In the sequel, we use
“contact” to refer to edges touching non-trivially.

A theorem of Thomassen [20] implies that all planar graphs can be represented
using convex hexagons and this also follows from results by Kant [15] and de Fraysseix
et al. [7]. Gansner et al. [10] have shown that six sides are not only sufficient but also
necessary, and gave a linear time construction. This leads us to consider which planar
graphs can be represented by polygons with fewer than six sides.

This paper presents some initial results for the case of touching triangles. We assume
we are dealing with connected planar graphs G = (V,E). We let TTG denote the class
of graphs that have a touching triangles representation. Concerning how to attack the



problem, we can start with some simple observations. First, unlike such classes as planar
graphs, TTG graphs are not closed under homeomorphisms or minors (cf. Appendix).
On the other hand, as Corollary 1 shows, we can sometimes find a subclass of TTG
graphs which can be extended by homeomorphism. In addition, there is the special
subclass of filled TTG graphs, i.e., those for which the polygon formed by the union
of triangles is simply-connected. At times, the filled version can be more tractable than
the general version, and may lead to a solution of the general problem [6].

In Section 2, we show that all outerplanar graphs can be represented as filled TTG.
Similarly, we show in Section 3 that all subgraphs of a square or hexagonal grid are in
TTG. All of these representations can be computed in linear time. Section 4 charac-
terizes the special case of graphs arising from filled triangulations of polygons. Finally,
in Section 5, we show that, for graphs in TTG, pairs of vertices can have very limited
common neighborhoods. This allows us to identify concrete examples of graphs not in
TTG.

1.1 Related Work

In the limiting case, one can date results on representing planar graphs as touching
polygons to Koebe’s 1936 theorem [16] which states that any planar graph can be rep-
resented as a contact graph of disks in the plane. Kant’s linear time algorithm for draw-
ing degree-3 planar graphs on a hexagonal grid [15] can be used to obtain hexagonal
drawings for planar graphs. Gansner et al. [10] show that at least six sides are necessary
and that the lower bound is matched by an upper bound of six sides with a linear time
algorithm for representing any planar graph by touching convex hexagons.

The problem restricting the polygons to isothetic rectangles has been extensively
studied, starting with Ungar [21]. Rahman et al. [18] describe a linear time algorithm
for constructing rectangular contact graphs, if one exists. Buchsbaum et al. [6] provide
a characterization of the class of graphs that admit rectangular contact graph representa-
tion. The version of the problem where it is further required that the rectangles partition
a rectangle is known as the rectangular dual problem. Bhasker and Sahni[4] and He [12]
describe linear time algorithms for constructing a rectangular dual of a planar graph, if
one exists.

In VLSI floor-planning it is often required to partition a rectangle into rectilinear
regions so that non-trivial region adjacencies correspond to a given planar graph. It is
natural to try to minimize the complexities of the resulting regions and the best known
results are due to He [13] and Liao et al. [17] who show that regions need not have
more than 8 sides. Both of these algorithms run in O(n) time and produce layouts on
an integer grid of size O(n)×O(n), where n is the number of vertices.

Rectilinear cartograms can be defined as rectilinear contact graphs for vertex weighted
planar graphs, where the area of a rectilinear region must be proportional to the weight
of its corresponding node. Even with this extra condition, de Berg et al. [2] show that
rectilinear cartograms with constant region complexity can be constructed inO(n log n)
time. Specifically, a rectilinear cartogram with region complexity 40 can always be
found.



2 Outerplanar Graphs

In this section, we show that any outerplanar graph can be represented by a set of touch-
ing triangles, that is, outerplanar graphs belong to the class TTG. Here we assume that
we are given an outerplanar graph G = (V,E) and the goal is to represent G as a set of
touching triangles. We describe a linear time algorithm based on inserting the vertices
of G is an easy-to-compute “peeling” order.
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Fig. 1. Incremental construction of the TTG representation for outerplanar graphs. The
shaded vertices on the top row and shaded regions on the bottom row are the ones
processed at the current step.

2.1 Algorithm Overview

1. Compute an outerplanar embedding of G.
2. Compute a reverse “peeling” order of chains of vertices of G.
3. Insert region(s) corresponding to the current set of vertices in the peeling order,

while maintaining a concave upper envelope.

We now look at each step in more detail. First we compute an outerplanar embed-
ding of the graph, that is, an embedding in which all the vertices are on the outer face.
For a given planar graph G = (V,E), this can be easily done in linear time as follows.
Letw be a new vertex and letG′ = (V ′, E′), where V ′ = V ∪{w} andE′ = E∪{(v, w)
for all v ∈ V }. Note that G′ is planar: if it contained a subgraph homeomorphic to K5

or K3,3, then G would contain a subgraph homeomorphic to K4 or K3,2, which would
imply that G was not outerplanar to begin with as these are forbidden graphs for outer-
planar graphs (Theorem 11.10, [11]). We can then compute a planar embedding for G′

with w on the outer face. Removing w and all its edges yields the desired outerplanar
embedding, with all vertices on the outer face.



The second step of the algorithm is to compute a reverse “peeling” order of the
vertices of G. Such an order is defined by peeling off one face at a time and keeping
track of the set of removed vertices. If G is a single edge, the result is trivial, so we may
assume that |V | > 2. In addition, we may assume that G is biconnected. If not, we can
traverse the outer face v1, v2, . . . , vn. If we encounter a node vi = vj , 1 < j < i, we
add a new node wi and edges (vi−1, wi) and (wi, vi+1). The graph remains outerplanar,
and we continue the traversal from vi+1. This yields a biconnected graph G′. If we can
construct a TTG for G′, we need only remove the triangles corresponding to the added
vertices to get a TTG for G.

The dual of an outerplanar graph restricted to the interior faces is a tree. We pick a
face with at least one edge (v1, v2) on the outer face and make that the root of the tree.
We then remove the faces in depth-first order. At each step, a face consists of vertices
v, u1, u2, . . . , uj , w, where j ≥ 1 and only the edge (w, v) is part of another face. We
then remove the path u1, u2, . . . , uj and continue the process until we come to the root
face. We then remove the path connecting v1 and v2.

The third step of the algorithm is to create the touching triangles representation of
G, by processing the graph using the peeling order from the second step. We begin
by placing the vertices v1 and v2 as shown in Fig. 1(a). We then recreate each face
in the reverse order in which it was removed by adding triangles corresponding to the
path removed from the face. We assume that, at each step, we have the following two
invariants:

1. each pair of adjacent triangles corresponding to the path from v1 to v2 form a
concave angle

2. each triangle has part of its upper side forming part of the boundary.

This is clearly true for the first step.
Suppose the path being added consists of a single vertex w connecting to adjacent

vertices vi and vk. Let p be the point where triangles vi and vk meet concavely, and let
q and r be any two points of the exposed upper sides of the two triangles vi and vk.
We can then add w as the triangle p, q, r, giving us the next face and maintaining the
invariants. This is illustrated in Figures 1(b) and (d).

If the path to be added consists of multiple vertices u1, u2, . . . , uj , with u1 and uj

connecting to adjacent vertices vi and vk, respectively, we again let the points p, q, r
be as defined in the previous paragraph. We then pick points s1, s2, . . . , sj−1 so that
path q, s1, s2, . . . , sj−1, r is a concave path of line segments. We can then add this face
using the triangles

(q, p, s1), (s1, p, s2), . . . , (sj−2, p, sj−1), (sj−1, p, r)

while maintaining the invariants. Figure 1(c) shows a sample of this.
Figure 1 provides an example of the algorithm. We start with the outerplanar em-

bedding shown in the top line of Figure 1(d), and progressively remove chains until we
are left with a single edge. This is used to create the configuration shown at the bottom
of Fig. 1(a). The chains are added as fans of triangles until we finish with the TTG
shown at the bottom right.

The first step of this algorithm can be done in linear time as it is a slight modification
of a standard planar embedding algorithm such as that by Hopcroft and Tarjan [14].
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Fig. 2. Replacing a chord in an outerplanar graph with a path

The second step can also be done in linear time as computing the “peeling ordering”
requires constant time per face, given the embedding of the graph from the previous
step. In the third step, we record the three edges of each triangle corresponding to each
processed vertex. Inserting a new chain of vertices involves finding, say, the midpoint
of the exposed edges, and forming the “fan” of new triangles, all tasks which require
constant time per vertex and add up to linear overall time. Thus, we have the following
theorem:

Theorem 1. A touching triangles representation can be computed in linear time for
any outerplanar graph.

Given that the above construction relies on fitting chains of triangles into smaller
and smaller areas with each face, the area bounds are likely to be poor.

Corollary 1. Any graph homeomorphic to an outerplanar graph has a touching trian-
gles representation.

Proof. (Sketch) Without loss of generality, we may assume that G is biconnected with
an embedding such that all vertices are on the outer face except for paths of nodes con-
necting two nodes on the outer cycle. We then replace these interior chains by chords,
yielding an outerplanar graph, and use the algorithm described above. By the construc-
tion, any chord is represented by two triangles, one of whose sides is totally within a
side of the other. The shorter side can then be rotated, breaking the chord but leaving
all other adjacencies intact. It is then simple to insert a fan of triangles corresponding
to replacing the chord by a path of nodes. Figure 2 shows how the edge between nodes
2 and 7 in Figure 1(d) can be replaced by a chain of two nodes.

3 Grid Graphs

In this section, we show that any subgraph of a square or hexagonal grid graph can be
represented by a set of touching triangles. We describe a linear time algorithm based
on inserting the vertices of the graph in an outward fashion starting from an interior
square/hexagon. We illustrate the algorithm with examples in Figure 3.
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Fig. 3. Grid graphs (left) as touching triangles (right). The Hamiltonian path that visits all
the vertices in the spiral order is given by the labels of the vertices.

3.1 Algorithm Overview

We first consider TTG representations for grid graphs.

1. Compute a planar embedding of G.
2. Compute a “spiral” order of the vertices of G.
3. Insert region(s), corresponding to a vertex or a path of vertices in the spiral order,

while maintaining a concave upper envelope in each quadrant (in the case of square
grid), or by carving out triangles out of trapezoids that correspond to the current
spiral segment (in the case of hexagonal grid).

The first step of the algorithm is to compute a planar embedding of the graph, which
can be done in linear time [14]. Next we compute a “spiral” order of the vertices. Such
an order is defined by a Hamiltonian path which starts with the innermost face and
visits all the vertices as shown in Fig. 3. Note that this is well defined for symmetric
grid graphs but can be modified to handle asymmetric grid graphs and subgraphs of grid
graphs.

In the case of square grids, the plane is partitioned into four quadrants and in each
quadrant the spiral order introduces vertices in paths of increasing lengths (1, 3, 5, . . .).



In general these paths can be introduced recursively, provided that the upper envelope
of the quadrant remains concave. The insertion of regions is similar to the process de-
scribed for outerplanar graphs above.

In the case of hexagonal grids the plane is partitioned into six sectors and in each
sector the spiral order introduces vertices in paths of increasing lengths (1, 3, 5, . . .). In
general, these paths can be introduced directly by adding an adjacent trapezoidal region
and carving it into triangles.

The above algorithms show how to construct a TTG representation for any square
or hexagonal grid graph. To get a TTG representation for any subgraph, one need only
remove the triangles corresponding to vertices unused in the subgraph, and adjust the
remaining triangles to remove any contacts corresponding to unused edges. Thus, we
have the following theorem:

Theorem 2. A touching triangles representation can be computed in linear time for
any subgraph of a square or hexagonal grid graph.

4 Triangulations

In a triangle representation, if we require that a vertex of one triangle cannot touch the
interior of the side of another, we get the special case of TTGs we call triangulation
graphs. These representations clearly correspond to creating a triangular mesh [3, 1],
allowing Steiner points within the interior of a polygon. For example, the representation
in the bottom right of Fig. 3 is a triangulation graph and the representation in the top
right of Fig. 3 is not.

It is easy to see that triangulation graphs form a strict subset of TTGs. For example,
K4 is a TTG but not a triangulation graph. It is also immediate that a triangulation
graph has maximum degree 3, because by the definition of triangulation graphs, the
vertex of one triangle cannot touch the side of another.

Lemma 1. If G is a triangulation graph with no nodes of degree 1, G has at least 3
nodes of degree 2.

Proof. The only triangles that can contribute to the polygon’s boundary or outer face
must have degree 2 in the graph, each contributing exactly 1 edge to the boundary. Since
the polygon has at least 3 edges, the result follows.

Here we focus on the filled triangulation graphs, those whose TTG representation
is filled. It is possible to fully characterize the biconnected subset of these graphs.

Theorem 3. A biconnected graph G is a filled triangulation graph if and only if it has:

1. only nodes of degree 2 or 3
2. an embedding in the plane such that:

(a) every internal node has degree 3;
(b) there are at least 3 nodes of degree 2 on the boundary;
(c) if there are any degree 3 nodes on the boundary, all of the degree 2 nodes

cannot be consecutive; and



(d) if the degree 2 nodes on both ends of a chain of degree 3 boundary nodes are
removed, the graph remains connected.

Proof. We first prove necessity. Let G be a filled triangulation graph. Since it is bicon-
nected, it cannot have any vertices of degree 1. Its triangulation representation yields
an embedding with all internal nodes of degree 3. Lemma 1 shows we have at least 3
nodes of degree 2 on the boundary.

Suppose there are degree 3 nodes on the boundary and the degree 2 nodes are con-
secutive. The chain of degree 2 nodes cannot connect at a single vertex, because this
would be a cut vertex. Thus, if we remove all triangles corresponding to degree 2 nodes,
we would have a triangulation representation of a graph with exactly 2 vertices of de-
gree two, which is not allowed by Lemma 1.

To finish the proof of necessity, we note that for two degree 2 triangles to disconnect
the triangulation, they would have to share an interior vertex. On the other hand, if all
intervening triangles on the boundary have degree 3, they can contribute nothing to the
polygon boundary, so the two degree 2 must share another vertex. But then, they share
a side, so there can’t be any intervening degree 3 triangles.

Next, we prove sufficiency. We assume G is biconnected, all of its vertices have
degree 2 or 3, and it has the specified embedding. We construct a graph G′ which is a
special kind of dual of G. G′ contains the dual of the interior faces and edges of G. In
addition,G′ has a vertex for each maximal sequence of degree 3 nodes on the boundary,
and a vertex for each boundary edge connecting two degree 2 nodes. These are placed
in the external face of G, near the corresponding nodes or edges. These vertices are
connected in a cycle of G′ following the ordering induced by the boundary nodes and
edges of G. Finally, for each boundary edge e of G, we add an edge from the node of
G′ corresponding to the interior face of G containing e to one of the vertices on the
external cycle of G′. If e is adjacent to a vertex of degree 3, we connect the edge to the
node of G′ corresponding to the degree 3 vertex. Otherwise, we connect to the node of
G′ corresponding to e.

It is immediate from the construction that G′ is a planar embedding of nodes and
edges; all interior faces are triangles; and there is a 1-1 correspondence between faces
of G′ and vertices of G and between edges in G and G′. We need to show that G′ is a
simple graph.

As G is biconnected, G′ can have no loops. Property 2(d) of the embedding implies
that each interior face is connected to at most one of the nodes associated with the
exterior face. The only way that multiedges could then occur would be if G′ has a
boundary consisting of two nodes and two edges. We know G has as least n2 ≥ 3
nodes of degree 2 on the boundary. If there are only degree 2 nodes on the boundary,
G′ has a boundary of n2 nodes. Assume G has some degree 3 nodes on the boundary.
If these nodes split into 3 or more paths, the construction creates at least 3 nodes on the
boundary of G′. If not, they must split into 2 paths, since the degree 2 nodes must be
separated. One group of degree 2 nodes must contain at least 2 nodes. The construction
then creates one node for each group of degree 3 nodes, and at least one node for the
path of more than 2 degree nodes, again given G′ at least 3 boundary nodes.



As G′ is simple, by using one of the algorithms (e.g, [9]) for making the edges of
planar graph into line segments while retaining the embedding, we derive a triangulation
representation of G, completing the proof.
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Fig. 4. Constructing a triangulation graph. (a) Original graph; (b) Creating the “dual”
graph; (c) Straightening the edges.

Perhaps not surprisingly, the conditions of the theorem have a similar feel to those
for rectangular drawings [18]. It is also not hard to see that the result can probably
be derived from the duality between planar, cubic, 3-connected graphs and triangula-
tions of the plane [19], but our proof seems more straightforward. Lastly, we note that
Theorem 3 gives another proof that the hexagonal grid graphs of Section 3 are in TTG.

Figure 4 illustrates the algorithm. Figure 4(a) shows a graph satisfying the condi-
tions of the theorem. In Figure 4(b), we have added a node for each internal face, and
node on the outside for each sequence of degree 3 nodes or for each edge both of whose
nodes have degree 2. This gives us a planar graph with each face having three sides and
associated with a node of the original graph. Straightening the sides of the faces makes
each face a triangle.

5 Necessary conditions

Thus far, we have shown that various categories of graphs are in TTG. Now, we wish
to pursue some necessary conditions which will eliminate many graphs from TTG.
Specifically, we show that pairs of vertices in any graph that can be represented by
touching triangles must have a small common neighborhood: if a pair of vertices is
connected by an edge, they cannot have more than 3 common neighbors, and if they are
not directly connected, they cannot have more than 4 common neighbors. We start with
some definitions.

Given triangles T0 and T1, pick two sides s0 and s1, one from each triangle, and
orient the side counter-clockwise around the interior of the triangle. Extend the sides
into directed lines L0 and L1. If the lines intersect at a unique point, the intersection is
feasible if a non-trivial portion of s0 lies to the right of L1 and a non-trivial portion of
s1 lies to the right of L0. Considering the four rays induced by the intersection, only
one of the four angles corresponds to a ray pointing into the intersection followed by
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Fig. 5. A triangle T touching two other triangles T0 and T1. The angle α is a feasible angle
of T0 and T1.

right turn to a ray point out. We call this a feasible angle. Two sides are collinear if the
directed lines L0 and L1 are identical.

Lemma 2. If a triangle T touches both T0 and T1, using two distinct sides, one of its
angles must be a feasible angle of T0 and T1.

Proof. If α is the angle of T determined by the two touching sides of T0 and T1, it
immediate that α is a feasible angle. See Figure 5.

This lemma already greatly reduces the possible TTG graphs. If two triangles have
no collinear sides, there can be at most nine triangles touching both of them, since
any such triangle uses at least one of the feasible angles. If two sides are collinear,
one triangle can touch those two sides. Any other triangles must correspond to feasible
angles, and since the remaining sides of both triangles are all to the left of the two
collinear sides, there can be at most 4 feasible angles. We next work at tightening these
bounds.

For a node u in G, we let Nu be the nodes in G joined to u by an edge. If u and
v are two nodes in a graph G, define Nuv as the mutual neighbors of u and v, that is,
Nuv = Nu ∩Nv . Finally, define Euv be the subset of edges of G induced by Nuv .

Theorem 4. Let G be a TTG, and let u and v be two nodes in G joined by an edge.
Then |Nuv| ≤ 3 and |Euv| ≤ 1.

Proof. Let Tu and Tv be the two triangles corresponding to nodes u and v. Since the
two nodes share an edge, Tu and Tv must touch. There are basically two possibilities:
one side is totally contained in the other or not.

In the first case, we have the situation represented in Figure 6. We immediately note
that there can be no feasible angle associated with 12 and ab. In addition, ab is to the
left of both 23 and 31. On the other hand, there are feasible angles formed by 12 with
bc and ca. So, we only have to consider pairings of 23 and 31 with bc and ca.

If point c is placed in region II, both bc and ca are to the left of 23 and 31, so there
are no more feasible angles, giving a total of two.

If c is in region III, we get a new feasible angle formed by 31 and bc. In this case,
though, we are left with bc and ca to the left of 23, and 31 to the left of ca. Thus,
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Fig. 6. Touching triangles with one side contained in the other. (a) Node c in region I; (b)
Node c in region II; (c) Node c in region III.

we have at most three feasible points. We also note that any triangle associated with the
feasible angle formed by 12 and ca cannot share an edge with any triangle of the other
two feasible angles, so there can be at most one edge among the neighbors of u and v.
The argument is similar if c is in region I.

If points 1 and b are identical, the same arguments hold except, in addition, we no
longer have a feasible angle formed by 12 and bc because 12 is to the left of bc. Thus,
we have at most two mutual neighbors and no edge between them. If points 2 and a are
the same, the same arguments hold. Putting these two cases together, we find that if 1
and b are identical and 2 and a are identical, there can be at most one feasible angle.

The remaining case occurs when neither shared side is contained in the other. This
is the situation represented by Figure 7.
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Fig. 7. Touching triangles with touching sides overlapping. (a) Node c in region I; (b) Node
c in region II; (c) Node c in region III.

As previously, there can be no feasible angle associated with 12 and ab, but now
we have feasible angles formed by 12 and ca, and by 31 and ab. In addition, 12 is
to the left of bc and ab is to the left of 23. Again, we are reduced to considering the
four pairings of 23 and 31 with bc and ca. If ca is to the right of 31, then 31 is to the
left of ca, and vice versa, so that pairing is not possible. Finally, we note that if c is in
regions I or II, then 23 and 31 are to the left of bc, while if c is in regions II or III, bc
and ca are to the left of 23. So, if c is in region II, there are at most two feasible angles.
Otherwise, there can be three but, as above, at most two of the associated triangles can
touch.

We next consider what happens to the set of common neighbors if we relax the
condition that there is an edge between two nodes.



Theorem 5. Let G be a TTG, and let u and v be any two nodes in G. Then |Nuv| ≤ 4
and |Euv| ≤ 2.

Proof. The proof is similar to that of Theorem 4, and is omitted for lack of space.

6 Conclusion and Future Work

We considered the class of graphs TTG that can be represented as side-touching trian-
gles, and showed that this includes outerplanar graphs, as well as subgraphs of square
and hexagonal grids. We derived some necessary conditions for such TTG graphs, and
described a complete characterization of biconnected triangulation graphs.

A complete characterization of graphs in TTG, as well as contact graphs of 4-
gons and 5-gons, remains open. This is true even for the typically simpler case of
filled graphs. Theorem 3 does solve the filled problem for a restricted version of TTG
graphs. Can this be extended to allow for holes? Finally, the work on hexagonal con-
tact graphs [10] gives a small (|V | × |V |) area bound. Are small areas possible in the
triangular or, at least, the outerplanar case?
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