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Abstract. In this paper, we consider the problem of representing graphs by polygons
whose sides touch. We show that at least six sides per polygon are necessary by con-
structing a class of planar graphs which cannot be represented by pentagons. We next
show that the lower bound of six sides is matched by an upper bound of six sides
with a linear time algorithm for representing any planar graph by touching hexagons.
Moreover, our algorithm produces convex polygons with edges having the slopes of a
regular hexagon, and with an area bound of n× n for fully triangulated graphs.

1 Introduction

For both theoretical and practical reasons, there is a large body of work considering how
to represent planar graphs as contact graphs, i.e., graphs whose vertices are represented by
geometrical objects with edges corresponding to two objects touching in some specified fash-
ion. Typical classes of objects might be curves, line segments or isothetic rectangles and an
early result is Koebe’s theorem [15], which shows that all planar graphs can be represented
by touching disks.

In this paper, we consider contact graphs whose objects are simple polygons, with an edge
occurring whenever two polygons have non-trivially overlapping sides. As with treemaps [3],
such representations are preferred in some contexts [4] over the standard node-link represen-
tations for displaying relational information. Using adjacency to represent connection can be
much more compelling, and cleaner, than drawing a line segment between two nodes. For
ordinary users, this representation suggests the familiar metaphor of a geographical map.

It is obvious that any graph represented this way must be planar. As noted by de Fraysseix
et al. [6], it is also easy to see that all planar graphs have such representations for sufficiently
general polygons. Starting with a straight-line planar drawing of a graph, we can create a
polygon for each vertex by taking the midpoints of all adjacent edges and the centers of all
neighboring faces. Note that the number of sides in each such polygon is proportional to the
degree of its vertex. Moreover, these polygons are not necessarily convex; see Figure 1.

It is desirable, for aesthetic, practical and cognitive reasons, to limit how complicated
the polygons are. Fewer sides, as well as wider angles in the polygons, make for simpler and
cleaner drawings. In related applications such as floor-planning [19], physical constraints make
polygons with very small angles or many sides undesirable. One is then led to consider how
simple such representations can be. How many sides do we really need? Can we insist that
the polygons be convex, perhaps with a lower bound on the size of the angles or the edges?
If limiting some of these parameters prevents the drawings of all planar graphs, which ones
can be drawn?



Fig. 1. Given a drawing of a planar graph(a), we apportion the edges to the endpoints by cutting each
edge in half (b), and then apportion the faces to form polygons (c).

This paper provides a partial answer to these questions. Previously, it was known [9, 19]
that all planar graphs can be represented using non-convex octagons. On the other hand, it
is not hard to see that one cannot use triangles (e.g., K5 minus one edge cannot be repre-
sented with triangles). Our main result is showing that hexagons are necessary and sufficient
for representing all planar graphs. For sufficiency, we describe a linear time algorithm that
produces a representation using convex hexagon all of whose sides have slopes 1, 0 or -1. We
show that the area requirement is n×n for fully triangulated graphs. This algorithm is based
on an algorithm of Kant [13] for embedding graphs on a hexagonal grid.

1.1 Related Work

As remarked above, there is a rich literature related to various types of contact graphs. There
are many results considering curves and line segments as objects (cf. [10, 11]). For closed
shapes such as polygons, results are rarer, except for axis-aligned (or isothetic) rectangles.
In a sense, results on representing planar graphs as “contact systems” can be dated back to
Koebe’s 1936 theorem [15] which states that any planar graph can be represented as a contact
graph of disks in the plane.

The focus of this paper is on side-to-side contact of polygons. The algorithms of He [9]
and Liao et al. [19] produce contact graphs of this type for any planar graph, with nodes
represented by the union of at most two isothetic rectangles, thus giving a polygonal repre-
sentation by non-convex octagons. By relaxing the isothetic constraint to allow angles of 45◦

we are able to reduce the number of sides to six, while enforcing convexity.
Although not considered by the authors, an upper bound of six for the minimum number

of sides in a touching polygon representation of planar graphs might be obtained from the
vertex-to-side triangle contact graphs of de Fraysseix et al. [6]. The top edge of each triangle
can be converted into a raised 3-segment polyline, clipping the tips of the triangles touching it
from above, thereby turning the triangles into side-touching hexagons. It is likely to be difficult
to use this approach for generating hexagonal representations as it involves computing the
amounts by which each triangle may be raised so as to become a hexagon without changing
any of the adjacencies. Moreover, by the nature of such an algorithm, there would be many
“holes,” potentially making such drawings less appealing, or requiring further modifications
to remove them.

We now turn to contact graphs using isothetic rectangles, which are often referred to as
rectangular layouts. This is the most extensively studied class of contact graphs, due, in part,
to the relation to application areas such as VLSI floor-planning [17, 25], architectural de-
sign [23] and geographic information systems [7], but also due the mathematical ramifications
and connections to other areas such as rectangle of influence drawings [20] and proximity
drawings [1, 12].
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Graphs allowing rectangular layouts have been fully characterized [21, 24] with linear al-
gorithms for deciding if a rectangular layout is possible and, if so, constructing one. The
simplest formulation [4] notes that a graph has a rectangular layout if and only if it has a
planar embedding with no filled triangles. Thus, K4 has no rectangular layout. Buchsbaum et
al. [4] also show, using results of Biedl et al. [2], that graphs that admit rectangular layouts
are precisely those that admit a weaker variation of planar rectangle of influence drawings.

Rectangular layouts required to form a partition of a rectangle are known as rectangular
duals. In a sense, these are “maximal” rectangular layouts; many of the results concerning
rectangular layouts are built on results concerning rectangular duals. Graphs admitting rect-
angular duals have been characterized [8, 16, 18] and there are linear time algorithms [8, 14]
for constructing them.

Another view of rectangular layouts arises in VLSI floor-planning, where a rectangle is
partitioned into rectilinear regions so that region adjacencies correspond to a given planar
graph. It is natural to try to minimize the number of sides of the resulting regions. The best
known results are due to He [9] and Liao et al. [19] who show that regions need not have more
than 8 sides. Both of these algorithms run in O(n) time and produce layouts on an integer
grid of size O(n)×O(n), where n is the number of vertices.

Rectilinear cartograms can be defined as rectilinear contact graphs for vertex-weighted
planar graphs, where the area of a rectilinear region must be proportional to the weight of its
corresponding node. Even with this extra condition, de Berg et al. [5] show that rectilinear
cartograms can always be constructed in O(n log n) time, using regions having at most 40
sides.

2 Lower Bound of Six Sides

Here we show that at least six sides per polygon are needed in touching polygon representations
of planar graphs. We begin by constructing a class of planar graphs that cannot be represented
by four-sided polygons and then extend the argument to show that there exists a class of planar
graphs that cannot be represented by five-sided regions.

2.1 Four Sides Are Not Enough

Consider the fully triangulated graph G in Figure 2(a). G has three nodes on the outer
face A,B and C, and contains a chain of nodes 1, ..., k which are all adjacent to A and B.
Consecutive nodes in the chain, i and i+ 1, are also adjacent. The remaining nodes of G are
degree-3 nodes li and ri inside the triangles ∆(A, i, i+ 1) and ∆(B, i, i+ 1).

Theorem 1. For k sufficiently large, there does not exist a touching polygon representation
for G in which all regions have complexity 4 or less.

Proof: Assume, for the sake of contradiction, that we are given a touching polygon drawing
for G in which all regions have complexity 4 or less. Without loss of generality, we assume that
the drawing has an embedding that corresponds to the one shown in Figure 2(a). Let QA and
QB denote the quadrilaterals representing nodes A and B, and Qi denotes the quadrilateral
representing node i. Once again, without loss of generality, let QA lie in the left corner, QB

in the right corner and QC at the top of the drawing.
We start with a couple of observations:
Observation 1: Since the three quadrilaterals QA, QB , QC are adjacent to the outer face,

a complete side of each quadrilateral is adjacent to the outer face.
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Fig. 2. (a) The graph that provides the counterexample. (b) A pair of subsequent fair quadrilaterals
adjacent to the same sides of QA and QB . (c) Illustration for Lemma 2.

From this observation, we conclude that at most three sides of each of the outer quadrilat-
erals are inside of the drawing. We consider the three sides A1, A2, A3 and B1, B2, B3 of QA

and QB , respectively, numbered from top to bottom; see Figure 2(b). The quadrilaterals of
the chain are adjacent to the three sides in this order, such that if Qi is adjacent to Aj (resp.
Bj), then Qi+1 is adjacent to Ak (resp. Bk) with k ≥ j. The adjacency of each Qi defines two
intervals, one on the polygonal chain A1, A2, A3 and another one on B1, B2, B3.

Observation 2: Consider the c(= 4) corners of QA and QB , where the sides A1 and A2,
A2 and A3, B1 and B2, B2 and B3 coincide. Clearly, at most 2 of the intervals that are defined
by the adjacencies of the Qi’s are adjacent to each of the c corners. In total, this makes at
most 2c = 8 intervals, that are adjacent to any of the corners of QA or QB . Hence, at most 8
quadrilaterals of the chain Q1, ..., Qk are adjacent to corners of QA and/or QB .

We now consider the quadrilaterals that do not define any of those intervals.
Let Qi be a quadrilateral that is not adjacent to any of the corners of the polygonal chains

A1, A2, A3 and B1, B2, B3. Two of its corners are adjacent to the same side Ak and to the
same side Bl, 1 ≤ k, l ≤ 3 of QB . We call such a quadrilateral a fair quadrilateral.

Lemma 1. If we choose k large enough, there exists a pair of fair quadrilaterals Qi and Qi+1

that are adjacent to the same sides of QA and QB.

Proof: We use a counting argument. We know that at most 8 quadrangles are not fair.
Hence, for k ≥ 2 · 2c + 2 = 18, there must be a pair of subsequent fair quadrilaterals. The
worst case happens for k = 17 if Q2, Q4, Q6, . . . Q16 are not fair. We can state even more
precisely that there are at least k − 17 pairs of subsequent fair quadrilaterals. Note that the
pair (Qi, Qi+1) of fair quadrilaterals where Qi is adjacent to the sides A1 and B1, but Qi+1

is not adjacent to A1 and B1 does not have the property claimed in the lemma. We call such
a pair transition pair.
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We can partition the set of fair quadrilaterals into at most 5 equivalence classes C1, ..., C5

that denote the sets of fair quadrilaterals, which are adjacent to the same sides of QA and
QB . When we sweep through the chain of middle quadrilaterals, we simultaneously proceed
through the equivalence classes. Hence there exist at most t = 4 transition pairs, namely pairs
of subsequent fair quadrilaterals that are in different equivalence classes.

These equivalence classes denote the pairs of sides (Ai, Bj) that are used, beginning from
the top with, say, (A1, B1), then (A1, B2), (A2, B2), (A3, B2) and finally (A3, B3). Note that
this is not the only possible set of equivalence classes, but by planarity, it is not possible to
have (A2, B3) and (A3, B1) simultaneously. Hence, there are at most 5 classes.

We repeat our counting argument from above and argue that for k ≥ 23 there are at least
5 or more pairs of subsequent fair quadrilaterals, so at least one has the property claimed in
the lemma. 2

Before we continue with the proof of the theorem, we include the following Lemma, illus-
trated in Figure 2(c):

Lemma 2. If there are two regions R,S touching in some nontrivial interval I = (a, b) then
at a, there is a corner of R or S. The same holds for corner b.

Now, let (Qi, Qi+1) be a pair of fair same-sided quadrilaterals, touching sides Ap and Bq.
Since Qi and Qi+1 have to be adjacent, the two sides next to each other touch. We can use
the above Lemma 2 to show that each interval that is shared by two polygons ends at two of
the corners of the two polygons. Since there exist the polygonal regions representing ri and li,
it is clear that the interval where Qi and Qi+1 touch is disjoint from the regions QA and QB .
Hence the corners derived from Lemma 2 are not the corners of Qi or Qi+1 that are incident
to sides Ap and Bq. This is a contradiction, since then both Qi and Qi+1 must have at least
5 corners, or one of them has even 6 corners. 2

2.2 Five Sides Are Not Enough

If we allow the regions to be pentagons, we have to sharpen the argument a little more.

Lemma 3. If we choose k large enough, there exists a triple of fair pentagons Pi, Pi+1, Pi+2

that is adjacent to the same sides of PA and PB.

Proof: We prove this along the same lines as before. Now we have four sides with c = 6
inner corners of the pentagons PA and PB . As before, we can see that at most 12 pentagons
of the inner chain are not fair. Since we aim now for triples and not just for pairs, we get a
worst case where every third pentagon is not fair. Hence for k ≥ 3 · 2c + 3, we get at least
k − 38 fair subsequent pentagons. Next, we estimate the number of transition triples. The
number of equivalence classes of pentagons with sides solely on the same side of PA and PB

is seven. As we deal with triples, this makes a bound of at most 14 transition triples, since
we can differentiate transition points between the first two and the last two pentagons of the
triple.

Hence, we have to grow k to 38 + 14 = 52 to ensure that a triple of fair same-sided
pentagons exists. 2

Theorem 2. For k sufficiently large, there does not exist a touching polygon representation
for G in which all regions have complexity five or less.
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Proof: We choose k to be at least 52. Now, let (Pi, Pi+1, Pi+2) be a triple of fair same-
sided pentagons, touching sides Ap and Bq. Since Pi and Pi+1 have to be adjacent, the two
sides next to each other touch. We can use Lemma 2 that each interval that is shared by
two polygons ends at two of the corners of the two polygons. Since there exist the polygonal
regions representing ri and li, it is clear that the interval where Qi and Qi+1 touch is disjoint
from the regions PA and PB . Hence the corners derived from Lemma 2 are not the corners
of Pi or Pi+1 that are incident to sides Ap and Bq. This is a contradiction, since both Pi and
Pi+1 have at least 5 corners, or one of them has even 6 corners. In the case, that Pi and Pi+1

have exactly 5 corners, we repeat the same argument for Pi+1 and Pi+2. From the second
application, we prove the existence of a second additional corner at Pi+1 or that Pi+2 has two
additional corners at the side opposite to Pi+1. In both cases, we get a contradiction. There
exists a region with at least 6 corners. 2

Note that six-sided polygons are indeed sufficient to represent the graph in Figure 2(a).
In particular, for subsequent fair polygons Pi and Pi+1, we can use three segments on the
lower side of Pi, while the upper side of Pi+1 consists of only one segment which completely
overlaps the middle of the three segments from the lower side of Pi.

3 Touching 6-Sided Polygon Graph Representation

In this section, we present a linear time algorithm that takes as input a planar graph G =
(V,E) and produces a representation of G in which all regions are convex polygons with at
most six sides each and slopes 0, 1, and -1. As it is based on Kant’s algorithm [13] for drawing
graphs on a hexagonal grid drawing, we first review his algorithm.

3.1 Kant’s algorithm for hexagonal grid drawing

Let H = (V,E) be a 3-connected, 3-planar graph. Note that the dual D(H) is fully triangu-
lated, as each face in the dual corresponds to exactly one vertex in H. So, for f faces in H,
we have f vertices in D(H). We first compute a canonical ordering on the vertices of D(H)
as defined by de Fraysseix et al. [6]. Let v1, ..., vf be the vertices in D(H) in this canonical
order.

Kant’s algorithm now constructs a drawing for H such that all edges but one have slope
-1, 0, or 1, with the one edge with bends lying on the outer face. The typical structure of
those drawings is shown in Figure 3.1.

The algorithm incrementally constructs the drawing by adding the faces of H in reverse
order of the canonical order of the corresponding vertices in D(H). We let wi be the vertices
of H. Let face Fi correspond to vertex vi in D(H). The algorithm starts with a triangular
region for the face Ff that corresponds to vertex vf . The vertex wx which is adjacent to Ff ,
F1 and F2 is placed at the bottom. Let wy and wz be the neighbors of wx in Ff . These three
vertices form the corners of the first face Ff . (wx, wz) and (wx, wy) are drawn upward with
equal lengths and slopes -1 and 1, respectively. All the edges on the path between wy and wz

along Ff are drawn horizontally between the two vertices. From this first triangle, all other
faces are added in reverse canonical order to the upper boundary of the drawing region. If a
face is completed by only one vertex wi, this vertex is placed appropriately above the upper
boundary such that it can be connected by two edges with slopes -1 and 1, respectively. If the
face is completed by a path, then the two end segments of the path have slopes -1 and 1, while
the other edges are horizontal. The construction ends when w1 is inserted, corresponding to
the outer face F1. Note that there is an edge between w1 and wx, which is drawn using some
bends. This edge is adjacent to the faces F1 (the outer face) and F2.
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a
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Fig. 3. Polygonal structure obtain from Kant’s algorithm.

From this construction, we can observe that the angles at faces Ff , ..., F3 have size ≤ π
as the first two edges do not enter the vertex from above, and the last edge leaves the vertex
upwards. Hence, we have the following result.

Lemma 4. The faces Ff , ..., F3 are convex, and as the slopes of the edges are -1,0 or 1, they
are drawn with at most 6 sides.

This property is exactly what we are aiming for, as the vertices of our input graph G
should be represented by convex regions of at most 6 sides. Unfortunately, Kant’s algorithm
creates two non-convex faces F1 and F2 separated by an edge which is not drawn as a line
segment. Furthermore, the face Ff is drawn as large as all the remaining faces F3, ...Ff−1

together.
Kant also gave an area estimate for the result of his algorithm. A corollary of Kant’s

algorithm is the following.

Corollary 1. For a given 3-connected, 3-planar graph H of n vertices, H −wx can be drawn
within an area of n/2− 1× n/2− 1.
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3.2 Application

To apply Kant’s result to our problem, we enlarge the embedded input graph G such that the
dual of the resulting graph G′ can be drawn using Kant’s algorithm such that the original
vertices of G correspond to the faces F3, ..., Ff−1.

We have to add 3 vertices which will correspond to the faces F1, F2 and Ff in Kant’s
algorithm. Since G is fully triangulated, let a, b and c be the vertices at the outer face of
G in clockwise order. We add the vertices x, y and z in the outer face and connect toG
appropriately. We want z to correspond to the outer face F1, y correspond to F2 and x to
Ff . First, we add x and connect it to a, b and c such that b and c are still in the outer face.
Then we add y and connect it to x, b and c such that b is still in the outer face. Finally, we
add z and connect it to x, b and c such that z, y and x are now in outer face, as shown in the
Figure 3.2.

G

a

b

x

z

y

c

F1

F2

Ff

Fig. 4. The graph G enhanced by vertices z, y and x together with its dual which serves as input graph
for Kant’s algorithm.

Since the vertices x, y, z are on the outer face, we can choose which one is first, second
and last in the canonical order. We can then apply Kant’s algorithm with the canonical order
v1 = z, v2 = y and vf = x. After constructing the final drawing, we remove the regions
corresponding to vertices z, y and x, leaving us with a hexagonal representation of G. Since
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Kant’s algorithm runs in linear time, and our emendations can be done in constant time, we
can summarize:

Theorem 3. For a fully triangulated planar graph G on n vertices, we can construct a contact
graph of convex hexagons in time O(n). The sides of the hexagons have slope 1, 0, or -1.

Given any planar graph G, if it is not biconnected, we can make it biconnected using a
procedure attributed to Read [22], adding a vertex and two edges at each articulation point.
Once biconnected, we can fully triangulate the graph by adding a vertex inside each non-
triangular face and connecting that vertex to each vertex on the face. We can then apply
Theorem 3, to get a hexagonal representation of the extended graph. Finally, removing the
added vertices and their edges, we obtain a hexagonal representation of G. This gives us:

Theorem 4. For any planar graph G on n vertices, we can construct a contact graph of
convex hexagons in time O(n). The sides of the hexagons have slope 1, 0, or -1.

3.3 Area estimation

For a triangulated input graph G = (V,E), we have n vertices and, by Euler’s formula, 2n−4
faces. Since we enhanced our graph to n + 3 vertices, we have f = 2n + 2 faces. Those faces
are the vertices in the dual D(G) which is the input to Kant’s algorithm. His area estimation
gives an area of n/2 − 1 × n/2 − 1 for f = n vertices coalesce the faces F1, F2 and Ff into
a single outer face by removing the corresponding vertices and edges. Thus, we get an area
bound of n× n using exactly the same argument as he did.

Theorem 5. For a fully triangulated planar graph G of n vertices, we can achieve a contact
representation of convex hexagons with area n× n.

4 Conclusion and Future Work

We have shown that touching polygonal representations of planar graphs require at least six
sides per polygon. We also described a simple, linear time algorithm for generating touch-
ing polygon representations for planar graphs that uses at most six sides per polygon, thus
matching the lower bound. Moreover the algorithm produces convex polygons defined by sides
with fixed slopes of 0, 1, -1, and the entire layout requires n× n area.

The obvious direction for future work would be a search for characterizations of graphs
that can be represented by k-gons where 3 ≤ k ≤ 5.
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