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Abstract

On many distributed memory systems, such as workstation clusters or the In-
tel iPSC/860, the multigrid algorithm suffers from having extensive communication
requirements and, in general, it is not very competitive in comparison to the conjugate
gradient algorithm. This is in contrast to the sequential problem whereby the multigrid
algorithm is very effective in reducing the global residual, particularly for very large
linear systems of equations. These two algorithms are now compared on the Cray T3D
for solving very large systems of linear equations (resulted from grids of the order 2563
cells). The communication performance of the Cray T3D is first measured by the stand-
ard ping-pong tests and also by practical communication tasks that are found frequently
in CFD calculations. It is found that the Cray T3D has a low latency (= 6 us) and a
high bandwidth interprocessor communication (120 MB/s) when the low-level intrinsic
communication routines are used. As a result, the multigrid algorithm is found to be
very competitive when compared with the conjugate gradient algorithm for solving the
very large linear systems arising from the Direct Numerical Simulation of turbulent

Combustion (DNSC). Results are contrasted by those on the Intel iPSC/860.

1. Introduction

Large scale linear systems arising from Computational Fluid Dynamics (CFD) are
usually solved using iterative methods because they are efficient for many large sparse

systems and have a low storage requirement. However, it is a common observation that
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when using stationary-type iterative algorithms, such as the Jacobi or the Gauss-Seidel
algorithms, the residual, which is an indication of the extent to which the algorithms
have converged, normally drops very quickly in the first few iterations, and then it takes
more and more iterations to reduce the residual by the same factor. This is even more
so when solving problems on very fine grids and is due to the fact that most stationary
iterative algorithms are good at reducing the high frequency errors, but not the low
frequency errors. Multigrid methods (see, e.g., [2]) are therefore frequently employed to
overcome this problem by solving the problem on a coarser grid, where the low frequency
errors of the finer grid will appear as high frequency errors, whenever progress on the
finer grid is slow. Nonstationary iterative algorithms, such as the conjugate gradient,

are also popular for CFD calculations.

Multigrid algorithms tend to iterate the most on the coarsest grid. However, one
coarse grid iteration only incurs a fraction of the computational cost of the finest grid
iteration. Hence, on a sequential machine, even though multigrid algorithms may need
a large number of iterations to converge over all levels, the equivalent number of iter-
ations on the finest grid is usually quite low and insensitive to the grid size. Multigrid
algorithms are therefore quite competitive with nonstationary schemes, such as the con-
jugate gradient algorithm, on sequential machines. The same is not generally true on
a distributed memory machine. The large amount of iterations required on the coarse
grids, where the computational work is relatively small in relation to the communica-
tion requirement (most of which involve short message lengths), means that multigrid
algorithms tend to suffer significantly on many distributed memory parallel computers,
such as the Intel iPSC/860. This is due to the high latency and low interprocessor

bandwidth on many of these systems.

In this paper, the performance of a multigrid algorithm is considered and com-
pared with the conjugate gradient algorithm on a Cray T3D, for solving very large
(sparse) systems of equations from the Direct Numerical Simulation of Turbulent Com-
bustion. The Cray T3D (at the Edinburgh Parallel Computing Center) was installed
in April 1994 with 256 processors and became UK’s successor to the Intel iPSC/860
(at Daresbury Laboratory). The Intel has 64 processors each running at 40 MHz and

having 16 MB of memory. The Cray T3D is composed of 320 processor elements (PEs),
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each consisting of a DEC Alpha 21064 processor running at 150 MHz and having 60
MB of memory. The nodes (each node comprises 2 PEs) are arranged in a 3D torus.
All arithmetic operations, both integer and floating point, are performed using 64-bit
arithmetic. Moreover, the machine supports both message passing as well as global
address space. As there are no high level intrinsic communication routines (such as
CSEND/CRECV on the Intel iPSC/860), PVM is generally used. To send a typical
message using PVM involves 3 calls (i.e. PVMFINITSEND, PVMFPACK, PVMF-
SEND). Cray also provides a simplified version named PVMFPSEND, and the corres-
ponding PVMFPRECV. On the CRAY T3D there are also a library of optimised lower
level communication routines, for example SHMEM_PUT and SHMEM_GET, which
use the CRAY T3D’s shared memory feature and allows remote writing and reading of
data. These routines are tested and compared in this paper. Practical communication
tasks using these routines are also looked at. Finally, the multigrid algorithm and the
conjugate gradient algorithm are compared.

All the tests were carried out between December 1994 and January 1995. On
the Cray T3D, the CF77 programming environment has since been updated but no

significant effect was found to the results of this paper.

2. Measuring the Communication Performance of the Cray T3D

To measure the communication performance of the Cray T3D the standard ping-
pong test ([10]) was carried out. In this test, processor A sends a message of length
n to processor B whereby, upon receiving the message, processor B sends the message
back to A. This process is repeated 1000 times and half of the averaged time is taken to
be the time to do a send. Usually there is a linear relationship ([4]) between the time

and the message size, namely:

where tg is the startup time (in microseconds) and n is the message length (in Bytes).
It is also useful to characterise the communication performance using the parameter

pair (e, n%) ([12]). Namely, the peak bandwidth is:

, (MB/s) (2.2)
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where MB/s stands for Million Bytes/second ([11]). The message size to reach half the

peak bandwidth is then given by:
= —. (Bytes) (2.3)

Table 2.1 lists the communication performance parameters obtained for the T3D
using the standard test and the figures for Intel iPSC/860 are taken from Helin and
Berrendorf ([8]). The test were done on a single node of the T3D comprising two
processors, using standard FORTRAN 77 code with the —O1 —Oscalar3 compiler
option, which was the highest optimisation available. The timings were obtained from
the Cray intrinsic routine, rtc, which measures the time in clock cycles and is believed
to be quite accurate. The overhead associated with a clock call was also taken into
account. The time taken for the communication against the message length is plotted

in Figure 2.1. The bandwidth as a function of the message length is given in Figure 2.2.

Table 2.1 Communication performance parameters for the Cray T3D and the

Intel iPSC/860

to Jé Too n

Cray T3D, PVM  |138(265)[3.889 x 10~2(3.831 x 10~2)[25.7(26.1)[3357(6930)
Cray T3D, PVMFPSEND)| 32(222) [2.969 x 10~2(3.807 x 10~2)|33.7(26.3)[1090(5834)
Cray T3D, SHMEM_PUT 6 8.321 x 1073 120.2 780
Cray T3D, SHMEM_GET| 6 1.724 % 10~2 58.0 362

Intel iPSC/860, CSEND |70(175)| 4.1 x 1071(3.6 x 107!) | 2.4(2.8) | 170(486)

M=

As can be seen from Table 2.1, the PVMFPSEND has a measured startup time of
around 32 us, and a peak bandwidth of 26 MB/s for long messages. From Figure 2.1 it
is seen that there is a jump in the communication time at 4096 Bytes. This corresponds
to the value of the PVM parameter PVM_DATA_MAX (set in default to 4096 Bytes),
which is the size of the PVM receiving buffer. If this parameter is increased to, say,
70 kB (70000 Bytes), then the jump does not happen until 70 kB, and the corresponding
communication time before this size is reached is also lower, with a peak bandwidth

of about 33 MB/s. However, this parameter affects the memory requirement of PVM
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by the term PVM_SM_POOL x PVM_DATA _MAX, with PVM_SM_POOL set to the
maximum of 10 and 2 X number of processors by default, which allows each processor
to receive 2 messages from every other processor. Thus a large increase of the parameter
can significantly reduce the memory available for the applications. For that reason the

default value (4096 Bytes) was used for the rest of this paper.

The Cray SHMEM_PUT routine allows data to be written to the memory of a re-
mote processor by specifying the remote PE number and the address location. However,
the remote processor’s data cache is unchanged. Thus, when the remote PE references
the same data, it may load the old value held in the data cache rather than the new
value that was put in the main memory. There are a number of ways to avoid this prob-
lem. In our tests, the Cray routine SHMEM_UDCFLUSH was used to flush the cache
after the put was done. It is also necessary to perform two synchronisations within a
ping-pong cycle to ensure that the correct data are put between the two PEs. For the
SHMEM _GET test, flushing the cache is not necessary, although two synchronisations

still need to be done.

The time for both SHMEM_GET and SHMEM_PUT is almost linear with the
message size, with a startup time of around 6us for both, and a peak bandwidth of
58 MB/s and 120 MB/s, respectively. The peak bandwidth is roughly the same as the
figures quoted by Cray ([14]), although the startup time is higher than the Cray figures
of 1-2 us. It was found that the time to SHMEM_PUT an 8 Byte message varied
between 4-7 us and appeared to depend upon the size of the arrays defined and on
where the code fragment was called from (i.e. from a complicated program or a simple
program). The peak bandwidth was also subject to a deviation of around 10 MB/s. It
should be noted that instead of using SHMEM_UDCFLUSH routine to flush the whole
cache, it is possible to use SHMEM_UDCFLUSH_LINE to flush a specific cache line.
This will bring the time to send an 8 Byte message to around 3-4 us without affecting
the peak bandwidth. However, inconsistent answers were occasional produced with
practical applications when using SHMEM_UDCFLUSH_LINE and the most reliable

approach was to flush the entire cache.

As can be seen from Table 2.1, in comparison with the Intel iPSC/860, the

Cray T3D, with both PVM and the low level routines, has a much lower latency and
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the peak bandwidth is also 10-50 times higher.

All of the foregoing communication parameters were derived using two
neighbouring processors. Figures 2.3 and 2.4 show the time against the message length
for performing the ping-pong test among one processor and any other processor from a
128 processor configuration. The percentage of fluctuation (scaled by 10) of the sending
time over the 127 ping-pong tests is also shown in Figures 2.3 and 2.4. The fluctuation
was calculated from the difference between the maximum time (¢,,4,) and the minimum
time (£min) to send a message of size n divided by the average time (¢) to send the same

message, which can be written as:

fluctuation = M (2.4)

As can be seen, the distance between processors seems to have only a small influence
on the communication time. For the size of the messages considered in Figures 2.3 and
2.4, the percentage of fluctuation for the SHMEM_PUT is under 7%, while that for
the PVMFPSEND is under 11%. Tests were also done for larger message sizes up
to 80kB on up to 256 processors. It was found that the percentage of fluctuation for
SHMEM _PUT stays at around 6%, while that for the PVM gradually increases to about
20%.

Bidirectional message exchange is also tested on a two PE node for SHMEM_PUT
and PVMFPSEND (with the default setting of the parameters). The SHMEM_PUT
is agained used with SHMEM_UDCFLUSH and two synchronisations. Unlike in the
ping-pong test, here each processor will send the message to the other at the same
time. The results in Table 2.2 show that the startup time and the bandwidth for the

PVMFPSEND have a marked increase over the uni-directional result of Table 2.1, while

that for SHMEM_PUT improves only slightly.

Table 2.2 Communication performance parameters for bidirectional message

exchange
to 06 Too ni
Cray T3D, PVMFPSEND|19(148)(1.925 x 1072(2.074 x 107%)|51.9(48.2)(964(7145)
Cray T3D, SHMEM_PUT| 6 7.139 x 1073 140.1 854




3. Measuring Some Practical Communication Tasks

Global summation and transferring of halo data are two examples of
communication tasks frequently encountered in CIF'D codes. For all the results shown,
PVM refers to using PVMFPSEND and PVMFPRECV with the default setting of the
parameters, and SHMEM refers to using SHMEM_PUT with SHMEM_UDCFLUSH.

Global Summation

At the time of writing this paper, there was no intrinsic global summation routine
on the Cray T3D. An in-house hypercube global summation algorithm (see, e.g., [7])
is therefore tested using either PVMFPSEND and PVMFPRECV, or SHMEM_PUT.
Tests have been done to look at the time taken to do a global summation on up to 64
processors, for vectors up to 16384 elements. It is found that the time taken to do a
global summation using the binary tree algorithm is almost linear to the logy of the
number of the processors involved. It is a bit surprising that for very long messages,
the SHMEM version of the global summation routine is only around twice the speed
of the PVM version. This is lower than the ratio between their bidirectional peak
bandwidths. To analyse this the summation was repeated on a 2 processor cube, so
that the summation involved only two stages; each processor first sends its vector to
the other processor and the received vector is then added (summed) to the vector it
owned originally. A detailed break down of the time is given in Table 3.1 for summing

a very long vector.

Table 3.1 Break down of the summation time (in milliseconds) using the binary tree

summation routine

msg. length (Bytes) | total time | comm. time | vector add. time
SHMEM 131072 5.19 1.86 3.30
PVM 131072 8.70 5.39 3.30

It can be calculated using the data from Table 3.1 that the vector summation part
is doing 5.0 Mflop/s. For the bidirectional message exchange, PVM is achieving 49
MB/s and SHMEM is achieving 140 MB/s. It is seen that for very long vectors, the
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time taken for the calculation (adding the two vectors) is of the same magnitude as
the time spent in the communication. When SHMEM is used, more time is actually
spent in the calculation. This explains why the ratio between the summation time is
lower than that expected from the bidirectional peak bandwidth ratio. Incidentally,
it is possible to replace the vector addition part of the routine with a Level 1 BLAS
SAXPY operation, which would reduce the calculation time for very long vectors by a
factor of about 3. Thus the ratio of total time will increase from 1.67 (Table 3.1) to
2.19. However, there is an overhead incurred using the BLAS routines ([6]) and it is
found that it is not beneficial to use it in the summation routine for vector lengths below
about 200 elements. Overall it seems that the CRAY T3D peak communication rate
is so good compared to the computation, that improving the bandwidth further will
not bring any significant reduction in the global summation time of very large vectors,
for the particular summation routine considered. For an 8 Byte message, the SHMEM

version of the global summation routine is 2 to 4 times faster than the PVM.
Halo Transfer

In many CFD calculations, the computational domain is meshed and for parallel
computation, the mesh is partitioned into subdomains. Each subdomain, plus a halo
region, is stored on a processor. The halo region includes the cells that are neighbours
to the subdomain (or neighbours of neighbours, depending on the discretisation scheme
used). Each processor will solve over its subdomain and assumes that the values in the
halo region do not change during the iteration. After each iteration, each processor will
update the values of the variables in the halo region by exchanging the halo data with
the appropriate processors. For 3D calculations, the size of the data in the halo region
of a processor is proportional to the surface area of the 3D subdomain resident on the
processor. Three dimensional arrays are usually used for storing the grid data and in
order to transfer the halo data, it is necessary to pack (or gather) 2D slices of the 3D
arrays into a single array before sending it to the required destination. On receiving
this array, that processor has to unpack (or scatter) the data back in to 3D arrays. This

is illustrated in the following program fragment:

Packing:

for k = ksta, ksto; j = jsta, jsto; © = ista,isto
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vector(n) = array(i, j, k)
n=n-+1
end do
Unpacking:
for k = ksta, ksto; j = jsta, jsto; © = ista,isto
array(i, j, k) = vector(n)
n=n-+1
end do
Here ksta, ksto etc are the start and stop indices for the halo data. It is clear that,
depending on which particular 2D slice of the 3D array is dealt with, the packing

(unpacking) can involve large strides in the memory access.

Table 3.2 Break down (in milliseconds) of the halo data transfer time

msg. length (Bytes)|total time|comm. time|pack and unpack time
SHMEM 9248 1.100 0.170 0.930
PVM 9248 1.663 0.733 0.930

Test cases were created by assigning each processor a cube of m? cells (including
the halo region, which is assumed to have a thickness of one). The number of processors
used ranged from 8 to 128 with m ranging from 2 to 34. The time taken to complete
one halo data transfer, against the size of the cube m, was measured. It was found that
for the shortest messages, using SHMEM is up to 3 times faster than PVM. For very
large messages, however, using SHMEM was less than twice the speed of PVM, which is
disappointing. The break down of time for the halo transfer on 2 processors for the 343
grid size is shown in Table 3.2. As can be seen from the table, the majority of the time
is actually spent in packing (unpacking) rather than in the communication itself. In this
case PVM and SHMEM are getting 25 MB/s and 109 MB/s for the bidirectional mes-
sage exchange, respectively. However, the packing (unpacking) speed is only 5 Million
operations per second (each pass of the packing or unpacking routine is assumed to in-

cur 2 operations). So once again, because the CRAY T3D’s communication bandwidth
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for large messages is quite high, particularly when compared with the computation and
main memory bandwidth, any significant improvement in the halo data transfer rate

for large messages can only be achieved by increasing processor performance.
Balance between communication and computation

The previous discussion highlighted the importance for a balanced computation and
communication performance. To formally measure the balance between communication
and computation, we look at the balance factor, b ([8]; see also [7]) given by:

b _ tcomm

)
tcalc

where t.omm is defined as the typical time to communicate one word between two
PEs and t.4;. is defined as the time to do a generic calculation, such as an addition,
subtraction or multiplication (but not a division, which is performed in software). The
parallel computer is defined as well-balanced if b < 1. As pointed out by Helin and
Berrendorf ([8]), it is difficult to define the typical time for the communication and
computation. For a sequential or shared memory computer, t.,;. should be a measure
of the speed of the processor while ..., is a measure of the memory access speed.
Thus b is a measure of how fast the memory is in feeding the processor. For distributed
memory machines, remote data usually has to be fetched from (or put to) the remote
processor explicitly before any calculation using this data can proceed. Therefore, for
the purpose of comparing the speed of the remote data access (or message passing) and
that of the computation, we use t.,pmm, as a measure of the remote data access speed
while ¢.4;. a measure of computational speed, including the speed of the processor itself
and that of the main memory access. Thus for example on a distributed memory system
with b >> 1, rather than fetching some data from a remote processor, it may be better
to derive the data if possible by some calculation on the local processor.

If we assume the rate of computation (say multiplication) of vectors of length n/8

(where n is in Bytes) is R(n/8) (Mflop/s), then:

1
Leale = W (HS)

Using (2.1), the typical communication time for sending an n Byte message is t =

to + Bn, thus:

to + fn
teomm = W (1s)
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Using (2.2) and (2.3) it is seen, after some algebraic manipulations, that:

bin) = Leomm _ SR(1/3) (1+ n_) |

tcalc Too

Thus for very large messages (n — 0o) we have:

b(oo) = . (3.1)

For a short message of 8 Bytes, as one usually has ni >> 1, then

b(E) ~ (%) (SR(l)) _ k) 3.9

oo

where mp = 1o /nL = ty! is the specific performance ([9]) which characterises the short-
message communication performance. It is therefore seen that for very large values of
n, the balance factor is given by the ratio of the computational rate and that of the
peak bandwidth whilst for the shortest message, the balance factor is also affected by
the latency. To reach a crude approximation for the balance factor b for very short
message sizes, we will make the assumption that the floating point performance is
constant and independent of n (this is clearly not the case ([6]), but it is generally not
possible to derive an analytical solution for the performance R). This approach is also
consistent with the work of Helin and Berrendorf ([8]). With the foregoing assumption,
the communication performance for a short message, as given by equation (3.2), can

therefore be expressed as
ni
b(8) =~ (?2) b(0). (3.3)

On the Cray T3D, it is found that the performance of a multiplication or addition
(z; = ; x y; or z; = &; + y;, see [8]) using pure FORTRAN is typically between 4 and
12 Mflop/s. Taking R = 8 Mflop/s as the average, then t.,. = 1/8 = 0.125 us. Using
the data for 5 and 3 in Table 2.1, the balance factor, as a function of message size,
can be plotted in Figure 3.1. For comparison, the balance factor for the Intel iPSC/860
([8]) is also plotted, where it was assumed that the Intel iPSC/860 (in 64-bit words
and with vectorisation) could do 5.9 Mflop/s. Compared with the Intel iPSC/860, the
Cray T3D is seen to be much better balanced. It is found that for the Cray T3D with
SHMEM_PUT, the balance factor varies between 52 and 0.5 and it becomes less than

one for messages above 888 Bytes. The machine is therefore balanced for medium to
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large message sizes. In fact, it can be slightly over balanced for very large message
sizes, as was found for the global summation and halo data transfer routines.
Assuming the same computational performance, in order for the balance factor of
the Cray T3D to be less than one for all message sizes, it is necessary to have a start up
time tg of less than 0.06 us, or around 10 clock cycles of the DEC Alpha, which does
not seem possible. Therefore, for small messages, the Cray T3D is unbalanced due to

the start up cost, though much better balanced than the Intel iPSC/860.

4. Application to the Multigrid Algorithm

Multigrid algorithms have been applied successfully in solving many linear and
nonlinear systems. A usual 2-grid algorithm on linear system Az = b on the fine grid
can be written as follows, with the superscript / and ¢ stands for quantities on fine and

coarse grid respectively.

Iterate on the fine grid equation Afz = b/ to get zf
Compute fine grid residual rf = b/ — AS 2/
Compute coarse grid residual r° = I;irf

Form coarse grid equation Az = r°

[terate on A°x = r¢ to get z°

Correct the fine grid solution ol =2l 1 I{facc

Repeat the above process until converged

In the algorithm illustrated above I7 is the restriction operator to transfer from
the fine to the coarse grid and I/ is the prolongation operator from the coarse to the
fine grid.

Parallel multigrid solvers, and the associated set of iterative algorithms, can be
used for solving the linear systems arising from CFD calculations. These equations
are usually very large and sparse but may also be anisotropic due to high grid aspect
ratios. However, they are usually diagonally dominant. These features decides our
particular choice of the implementation. The parallel multigrid solver is based on the
sequential algorithm proposed by Hutchinson and Raithby ([13], [15]), where the coarse
grid equation is formed by the so called block correct approach. With this approach,

the equations on the coarse grid cells are formed essentially by adding the equations for
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the fine grid cells. This avoids the complicated interpolation during the restriction and
prolongation process. Thus it is possible to lump an arbitrary number of cells along
any direction into a coarse grid cell. So a coarse grid cell may contain, say, 2 fine grid
cells, each in = and y directions, but more than two cells in the z direction. This is
useful when the equation is anisotropic along the z direction. It also allows us to cope
with subdomains whose number of cells along a certain coordinate direction is not even,
which could easily happen when solving CFD problems in parallel where a mesh has

been partitioned into many subdomains.

The multigrid algorithm is parallelised by the usual grid partitioning strategy. The
computational domain is split into p = p, X p, X p. subdomains, where p is the number
of processors. Coarsening factors along each of the coordinate directions are specified
by the user. For example, the factors (2, 2, 4) would mean that the coarse grid cells
are formed by lumping 2 cells each in the first or second coordinate direction, but 4
cells in the third coordinate direction. A negative factor means lumping all the cells
available along the coordinate direction that correspond to the factor, thus amounting
to a 1D block correction ([13]). A series of grids, each coarser than the previous one, is
generated on each processor using the coarsening factors provided. When the number
of cells for a fine grid subdomain on the current processor along, say, the z direction
cannot be divided by the coarsening factor, say 4, for that direction, one of the coarse

grid cells will contain less than 4 fine grid cells.

Starting from the finest level (level one), for each level of the grids, the linear sys-
tems are solved using an appropriate parallel stationary iterative algorithm. A number
of iterative algorithms have been implemented, including the Jacobi, the Gauss-Seidel
(GS) and the alternative direction line implicit (ADI) algorithms. A conjugate gradi-
ent algorithm (CG), using block diagonal modified incomplete LU factorisation (ILU)
as the preconditioner, was also implemented. It was found that, in general, multigrid
combined with GS takes less time to converge than with ADI, even though the latter
may take less iterations. After each iteration, halo data are transferred and the resid-
ual is assessed to decide whether to continue solving on the current level, to solve for
a correction on a coarser level (if the norm is not reducing faster than a given factor

o, we used o = 0.5), or whether the current level has converged (if the residual is less
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than « times the initial residual, we used 1.0 for the first level and o = 0.1 for all the
other levels). If the given tolerance has been satisfied, the correction can be added to
the finer level. It was found that on the coarsest grid, as the residual has to go down by
the factor a, it was faster to solve the problem using the conjugate gradient algorithm
(CG), rather than using the GS algorithm.

The number of iterations (work units) for a multigrid is defined to be the sum of the
equivalent finest iteration numbers on each level of the grids. Thus, with a coarsening
factor of 2 in each coordinate direction, one iteration on level two is counted as only
1/23 iterations on the finest grid (for a 3D calculation). This obviously ignores the cost
of transferring between grids and, more importantly on a parallel computer, the cost of
the communication.

The multigrid solver is used as a linear system solver for a Direct Numerical Simula-
tion of Combustive Combustion (DNSC) project. The DNSC ([3]) involves the solution
of the Navier-Stoke equations, augmented by two additional equations each describing
the transport of a single scalar variable which together specify the thermochemical state
of the system in the presence of differential diffusion effects. The usefulness of direct
numerical simulations depends on the Reynolds number that can be attained. It can

be shown that the attainable Reynolds number is given by:

N\ 3
()
n

where N is the number of cells along one direction of the computational domain and n
is the number of cells required to resolve the flame front. The generally accepted figure
for n is 10. Therefore, the Reynolds number is about 30 for a grid size of 128%. On the
CRAY T3D, grid sizes of 3683 have been used during initial tests which give a Reynolds
number of about 120. For problems of this size, computer storage requirements can be
quite high even for the solution of the linear equations. The use of a multigrid algorithm
will increase this storage requirement, although by less than a factor of 2.

The most expensive part of the DNSC calculation is the repeated solution of the
linear equations from the pressure equation. As these linear systems are symmetric pos-
itive semi-definite, they can also be solved using the preconditioned conjugate gradient
algorithm. The results of solving such a system associated with a mesh of size 64 are

shown in Table 4.1. The results compare the conjugate gradient algorithm (CG) and
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the multigrid algorithm (with Gauss-Siedel and 4 levels of grids, MGS4) on both the
Intel iPSC/860 and the Cray T3D. The number of iterations, total CPU time (f.py, in
seconds), time for halo data transfer (f,455, in seconds) and time for global summation
(tsum, in seconds) are given. The computational domains are partioned into 4 X 2 x 2
subdomains. The conjugate gradient algorithm is written in Level 1 BLAS uses the
ILU factorisation as the preconditioner. On the Cray T3D, SHMEM_PUT routine is

used for faster communication.

Table 4.1 Solving a 64% problem on 16 processors: comparing the Cray T3D and
the Intel iPSC/860

machine algorithm |iterations|t.py [ttrans|t sum
Cray T3D CG 144 |11.3] 0.4 |0.01
Intel iPSC/860| CG 144 130.7| 3.6 | 0.7

Cray T3D MGS4 129.1 |83| 1.5 | 0.6
Intel iPSC/860| MGS4 129.1 |42.0/15.7 1 9.2

As can be seen from Table 4.1, even with only 16 processors, a lot of time is spent in
communication on the Intel iPSC/860, particularly for the multigrid algorithm. This
is because there are a lot more iterations on the coarser grid which involve a lot of
global summations and halo data transfers, and most with short message sizes. On the
other hand, the computational work, relative to communication, is less for the coarse
grid. Since the Intel iPSC/860 has a much higher start up time, this results in a very
high communication overhead. Subsequently, the multigrid algorithm is slower than
the conjugate gradient algorithm on the Intel iPSC/860 whilst on the Cray T3D, the
multigrid is faster.

The same two algorithms were then used to solve a much larger problem associated
with a grid size of 256 on the Cray T3D. The results are given in Tables 4.2 and 4.3
for 128 and 256 processors, respectively. The grids were partitioned into 8 x 4 x 4
subdomains (for 128 processors) and 8 x 8 x 4 (for 256 processors) subdomains. Results
using both PVMFPSEND (PVMFPRECV) and SHMEM are presented. Results for
the Intel are not available because the problem is too large for the machine.

As can be seen from the tables,the conjugate gradient algorithm takes a lot more
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iterations for this large problem than when used for the 64 problem. It is also apparent
that the communication takes only a small percentage of the total time for the conjug-
ate gradient algorithm. This is because for the size of the problem being solved, the
subdomain on each processor is still quite large (of size at least 34 X 34 X 66), so the three
global summations and one halo data transfer per iteration for the conjugate gradient
algorithm do not take a significant amount of time compared with the computation.
However, for the multigrid algorithm, because of the large amount of communication on
the coarse grid, even though the Cray T3D has very fast communications, the amount

of time spent in the global summation and halo data transfer are quite significant.

Table 4.2 Solving a 256> problem on 128 processors: comparing the conjugate gradi-

ent multigrid algorithms

algorithm|iterations| t.py |trans|tsum
SHMEM| CG 474 |243.5| 5.9 | 0.2
SHMEM| MGS4 193.5 |98.5]|12.1]6.0
SHMEM| MGS5 173.0 [91.4]|14.4]9.5
PVM CG 474 |246.3| 8.3 | 0.6
PVM | MGS4 193.5 (122.221.2|20.4
PVM | MGS5 173.0 |126.8|26.8 |32.4

It is also interesting to compare the results using PVMFPSEND (PVMFPRECV)
and SHMEM. Compared with PVMFPSEND (PVMFPRECV), using SHMEM is seen
to reduce the global summation time t4,,, by a factor of over 3. This is consistent with
the reduction factor of between 2 to 4 for 8 Byte messages mentioned in the last section,
as all the global summations here are for the summation of scalars. Using SHMEM,
the halo data transfer time, for the conjugate gradient method, is reduced by about
1.4-1.5 and for the multigrid algorithm by a factor of 1.8-2. This is again consistent
with the reduction factor of up to 3 for the shortest message length and less than 2 for
the largest message length, as seen in last section. This is because, for the conjugate
gradient algorithm, the halo data size are quite large, while for the multigrid algorithm,
the size of the halo data ranges from very small, on the coarsest grid, to quite large on

the finest grid.
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Table 4.3 Solving a 256> problem on 256 processors: comparing the conjugate gradi-

ent multigrid algorithms

algorithm|iterations| t.py |ttrans|tsum
SHMEM| CG 443  |116.3| 3.4 | 0.2
SHMEM| MGS4 213.8 |57.9| 9.8 | 7.2
SHMEM| MGS5 193.0 [61.0]13.2 |12.6
PVM CcG 443  |118.6| 5.2 | 0.7
PVM | MGS4 213.8 |82.5|17.6 [23.9
PVM | MGS5 193.0 [103.8] 25.9 |54.2

It was also observed that it is sometimes beneficial to use fewer grid levels to
reduce the communication overhead associated with the coarse grids. For example, on
256 processors, MGS4 is faster than MGS5 due to the smaller communication times,

even though the former requires more iterations and more computing than the latter.

5. Conclusions

In this paper, the communication performance of the Cray T3D, relative to its
computational performance, was measured. In general, the Cray T3D communication
is seen to have a small start up time (= 6 ps) and a high peak bandwidth (120 MB/s),
especially when compared with the Intel iPSC/860. The machine is also found to be
well balanced for medium to large message sizes.

The good communication performance of the Cray T3D makes the multigrid al-
gorithm, which performs poorly on the Intel iPSC/860, very competitive against the
conjugate gradient algorithm, even though the multigrid algorithm still has a commu-
nication overhead of over 30% on 256 processors of the Cray T3D for the large scale
problem considered. To further improve the communication time for the multigrid
algorithm, it is necessary to reduce the startup time of the communication (a main
limiting factor for the global scalar summation using the binary tree algorithm, and the
halo transfer of short messages) as well as to improve the packing/unpacking speed (a

limiting factor for the transfer of halo data of large sizes).
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It is noted that to reduce the communication cost of the multigrid algorithm, it may
be useful to solve the coarse grid problem on only one or part of the processors available
(see, e.g., [1]). The preconditioning part of the conjugate gradient algorithm can also be
improved by employing an approach suggested by Eisenstat [5]. One interesting thing
that was observed during our investigation of the multigrid and conjugate gradient
algorithms was that, even though multigrid was suggested to overcome the inability
of the stationary type iterative algorithms in reducing the low frequency errors, in
practice, the combination of multigrid with the conjugate gradient algorithm on very
large problems frequently converges faster than the conjugate gradient algorithm itself,
or the combination of the multigrid and the GS algorithm. It is planned to study all

these further.
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