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Abstract

Scheduling of message passing for synchronous communication is found to be
equivalent to colouring the edges of a graph without conflict. The graph edge-
colouring problem, which has other applications, is studied. An algorithm which
colours the graph with no more than deg colours, where deg is the degree of the
graph, is implemented. The problem of minimising the sum of the largest weight
for each colour is also investigated and an algorithm suggested. These algorithms
are used to organise the communication as part of a finite element Euler solver.
Different communication schemes and their effect on the performance of the flow
solver are compared.

Keywords: graph edge-colouring; scheduling; communication time; grid
partitioning; message passing.

1 Introduction

The numerical solution of differential equations using finite element methods
involves constructing a mesh of many small elements over the physical domain.
On a distributed memory parallel computer, the mesh should be further de-
composed into subdomains, the number of which usually corresponds to the
number of processors. The decomposition should be such that

— a) each subdomain has roughly the same number of elements, so as to
achieve load balance;

— b) the number of faces shared between subdomains is as little as possible,
so as to minimise the communication.

This task of mesh decomposition is related to the graph partitioning prob-
lem, which was proved to be NP-hard. A number of graph partitioning al-
gorithms have been suggested, among them are those based on geometric
information (e.g., recursive coordinate bisection, recursive inertial bisection);
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algorithms based on connectivity information (e.g., recursive spectral bisection
[11], greedy algorithm [3]; local and global optimisation type algorithms (e.g.,
Kernighan-Lin algorithm [9], simulated annealing [15]. Multilevel techniques
[1] have been introduced to speed up the algorithms as well as to provide a
global view of the problem. Algorithms combining the multilevel idea and the
local optimisation algorithms are found to be most successful [14,8,5]. For very
large meshes (graphs) parallel algorithms are necessary [8,2].

Once a partitioning is given, each subdomain is assigned to a processor, and
after some computation, processors exchange data on the shared boundaries
of the subdomains. This process of computation and exchange of data goes
on until the solution has converged. The data exchange is achieved by each
processor sending messages to and receiving messages from processors that it
shares subdomain boundaries with.

Figure 1 (a) shows a mesh which is partitioned into 4 subdomains, assigned to
processors numbered 1, 2, 3, and 4. Figure 1 (b) shows the communication task
graph of the partitioning. For example, processor 2 has to exchange information
with processors 1, 3 and 4. The numbers in brackets in Figure 1 (b) are the
number of edges shared between processors, thus, for example, processors 2
and 4 share 2 edges. The communication task of Figure 1 (b) can also be
described by a communication task table (Table 1), in which the first column
lists the identities of the processors, the other entries list the identities of
adjacent processors (adjproc) and the corresponding message lengths (msglen,
in brackets) for data exchange. Table 1 shows that processor 3 has to exchange
messages with processors 2 and 4, with message lengths 14 and 7 respectively.

On many parallel platforms the communication time for sending a message
is roughly linear in the message length, subject to a start-up cost. Therefore
for convenience and machine independence, in this paper the message length
is used as an indication of the actual communication cost. However one can
always replace the message length by the estimated time of sending a message
of this length and all the algorithms of the paper still apply.

It is important to minimise the communication time because as more pro-
cessors are used, the communication overhead usually becomes the bottleneck
for good efficiency.

The problem of scheduling of message passing for finite element type
applications was addressed by Venkatakrishnan et al. [12]. They assumed that
there were no link contentions and that the communication time between the
processors were equal. This implies that either the message lengths between
processors are uniform or that the start-up time of communication dominates.
They suggested that the communication can be done in a number of stages.
At each stage, processors are grouped into pairs and do “pair-wise exchange”,



without interference from other processors. For example, the communication
task given by the graph shown in Figure 1 (b) can be executed in three stages
as described by Table 2. In the first stage, processors (1,2) and (3,4) exchange
messages. In the second stage, processors (1,4) and (2,3) exchange messages
and in the final stage processors (2,4) exchange messages. In between each
stage, a synchronisation is carried out.

A scheduling scheme which incorporates the feature that one processor is
paired with at most one other processor at any stage, and that any two
processors that are linked in the communication graph are paired at some
stage, 1s equivalent to the solution of the problem of colouring all the edges of
the communication task graph so that no two edges that start from the same
vertex have the same colour.

For example, the scheduling scheme given in Table 2 is equivalent to colouring
the edges between 1, 2 and 3, 4 in Figure 1 (b) with colour ¢;, the edges
between 2, 3 and 1, 4 with colour ¢;, and the edge between 2, 4 with colour
C3.

Let deg denotes the maximum number of messages to be sent, or degree of
the communication task graph (in Figure 1 (b) deg = 3). Venkatakrishnan et
al. [12] derived a scheme that can complete the message exchange in no more
than deg + 1 stages, although they did not give details of their algorithm.

In this paper it is assumed that there are no link contentions, but the mes-
sage lengths may vary and the start-up cost may not necessarily dominate the
communication time. Under these assumptions the total communication time
of a scheme is the sum of the longest time in each stage (plus the synchron-
isation cost). For example the communication cost of the scheduling scheme
given in Table 2 is 9 + 17 4 2 = 28. Two scheduling schemes of the same com-
munication task and with the same number of stages can thus give different
communication costs. For example Figure 2 shows two schemes for the same
communication task graph. The communication time between processors is
given in brackets and three colours ¢;, ¢ and c3, which correspond to three
stages of the communication schemes, are used. The first scheme (Figure 2 (a))
requires 6 + 6 + 5 = 17 units of time, the second scheme (Figure 2 (b)) needs
only 6 + 1+ 5 = 12 units of time. Thus in deriving scheduling schemes, one
should also seek to minimise the sum of the largest weight of edges with the
same colour.

The scheduling of communication is only one example in parallel computing
where the graph edge-colouring problem appears. There are other applica-
tions. For instance, the Kernighan-Lin (KL) algorithm [9] is usually used to
reduce the number of shared edges (edge-cuts) of an initial crude partition of
a graph. In the case of bisection, a gain is worked out for each vertex on the



two subdomains, which represents the reduction in edge-cuts had the vertex
been moved to the other subdomain. Every iteration, one vertex will be picked
and moved from the subdomain with more vertices to the one with less ver-
tices. The vertex is chosen to be the one with the largest gain. Implementing
the algorithm in parallel on many processors presents a challenge, as without
modification the KL algorithm is sequential in nature. One way of implement-
ing the KL algorithm in parallel [2] is to do the refinement in a number of
stages. In each stage processors (subdomains) are grouped in pairs. Paired
subdomains will refine their boundaries without interference from others. To
derive such a scheduling scheme is again the graph edge-colouring problem.
As the amount of time taken by each pair in refining their boundary is usually
proportional to the length of the boundary, the colouring should be done such
that the sum of the largest length of the boundary of each stage is minimised.

In Section 2, the graph edge-colouring problem is looked at and the imple-
mentation of an algorithm which produces an edge-colouring scheme with no
more that deg + 1 colours will be given. Secondly, an algorithm that attempts
to minimise the sum of the largest weights of each colour is introduced.

In Section 3 the algorithms of Section 2 will be used to derived synchronous
communication schemes and applied to message passing tasks resulting from
the partitioning of irregular meshes.

In Section 4 the algorithms of Section 2 will be applied to a parallel finite
element code and the effect of various algorithms on the execution time of the
code will be discussed.

Notice that the synchronous communication scheme described before is only
one way of organising the communication. Other alternative ways exist. Dif-
ferent ways of communication will also be compared the Section 4

Section 5 concludes the paper with further discussion.

2 Graph Edge-Colouring Problems and Algorithms

In this section the graph edge-colouring problem will be considered. An al-
gorithm which colours the graph with no more than deg + 1 colours is first
given. The problem of minimising the sum of the largest weight of each colour
is then considered and an algorithm will be suggested that attempts to solve
the problem.

Let G = (V, E) be a graph, where V is the set of vertices and E the set of
edges. The degree of a vertex is the number of edges that are linked to the



vertex. The degree of a graph, denoted by deg, is the maximum degree of all
vertices of the graph. Two edges are said to be adjacent if they share the same
vertex.

The edge-colouring problem can be defined as follows:

edge-colouring problem assign each edge of the graph G with a colour,
such that no adjacent edges have the same colour.

The chromatic number of a graph, x1(G), is the least number of colours needed
to edge-colour the graph. It is easy to see that at least deg colours are needed
to colour the graph, so x1(G) > deg. In fact an interesting theorem in graph
theory, proved by Vizing [13], shows that

Theorem 1 If G is a graph, then deg < x1(G) < deg + 1.

Therefore it is always possible to colour the edges of a graph with no more
than deg 4+ 1 colours. However to decide whether it is possible to colour the
graph with only deg colours is an NP-hard problem. So a practical bound is
deg + 1 colours.

The proof of the theorem (see, e.g., [4]) is based on adjusting the colouring
of the graph. Let C be the set of deg + 1 colours. Assume that part of the
graph is coloured with colours from C. Consider adding an uncoloured edge to
the coloured part of the graph. If there i1s a common unused colour from the
colour set C at both ends of the edge, then colour the edge with that colour.
Otherwise adjust the colouring of the coloured part of the graph to allow the
new edge to be coloured with no conflict.

The following algorithm, which colours a graph G with no more than deg + 1
colours, is based on the proof of the theorem. Here a path is denoted to be
a list of vertices of the form w;,ws,,...wy, where for 2 < 72 < k, the pair
(w;, w;_1) constitutes an edge in £ and vertices are not repeated, apart from
the case w; = wy.

Algorithm COLOUR

. step 1 Let C be the set of deg+ 1 colours. Let G be the part of the graph
whose edges were coloured using colours in C with no conflict.

- step 2 Find an edge e = (v, w) € G that is not in G¢, where v and w are
two ends of the edge e. If no such edge exists then all the edges have been
coloured with colours in C, so terminate.

- step 3 If there i1s a colour ¢ € C unused at both ends v and w, then colour
the edge e = (v, w) with the colour ¢, add the edge and both ends to G,
go to step 2. Otherwise let ¢; € C be an unused colour at v and ¢; € C



be an unused colour at w.

- step 4 Starting from w, find the largest path in G€ coloured with colours
¢; and c; alternately. Let the path be w, wy,ws, ..., wg.

- step 5 If wy # v then exchange the colours ¢; and ¢y in the path, colour
the edge e = (v, w) with ¢;, add the edge and its ends to G, go to step 2.

- step 6 Otherwise, if there is a colour ¢z unused both at v and wy_; then
change the colour of the edge (v, w,_1) from c3 to c3. Colour the edge
e = (v,w) with c;, add e and its ends to G, go to step 2.

- step 7 Else let ¢3 be an unused colour at wg_;. Uncolour the edge (v, wg—_1)
and delete it and its ends from G¢. Colour the edge e = (v, w) with colour
c; and add it and its ends to G¢. Rename wy_; as w, cs as cy, the edge
(v, wk—1) as e and repeat the procedure from step 4.

In practice there is usually more than one colouring scheme that edge-colours
the graph with no more than deg 4+ 1 colours. Let S be the set of all such
colouring schemes. The cost of each colouring scheme, is defined as the sum
of the largest weight of the edges that have the same colour. For example, in
Figure 2 (a), edges (1,6), (2,5) and (3,4) have colour ¢;, with a largest weight of
max{4, 1,6} = 6; edges (1,2) and (6,5) have colour ¢y, with the largest weight
of max{6, 1} = 6; edges (2,3) and (5,4) have colour c3, with the largest weight
of max{1,5} = 5, thus the cost of the colouring scheme given by Figure 2 (a)
1s64+6+5=17.

The minimum cost problem can be stated as following

minimum cost problem Among all colouring scheme s € S, find one that
has the minimum cost.

Although the algorithm COLOUR can give a colouring scheme with no more
than deg + 1 colours, it may not be the one with minimum cost. To illustrate
this, Table 3 presents a communication task table given by partitioning a
mesh of 788 elements into 16 subdmains, using a spectral bisection algorithm.
Thus the graph described by the table has 16 vertices. The maximum degree
1s deg = 5. Applying algorithm COLOUR results in the scheduling scheme
given by Table 4. In this case 5 colours are used. If one views the table as
a communication schedule, then in the 5-th stage, processor 10 exchanges
messages with processor 13, which needs 10 units of time. Processors 11 and
12 exchange messages which need 2 units of time, the rest of the processors
are idle. A better balancing of the communication load at each time step will
reduce the overall communication costs.

The following algorithm is proposed in an attempt to solve the minimum cost
problem. The idea is to colour as many as possible edges with large weights us-
ing one colour, then repeat the procedure recursively for the remaining edges.



The algorithm, named REDUCE, starts with a graph edge-colouring with no
more than deg+ 1 colours. Roughly speaking, first the edge e; with the largest
weight 1s found and locked, its colour is ¢;. Then the unlocked edge e; with
the next largest weight is found, its colour is ¢;. An attempt is then made
to colour the two edges e; and e, with the same colour. If ¢; = ¢o, then the
two edges with largest weights have indeed the same colour, so ey is locked.
Otherwise the following steps are carried out to change the colour of e, into
c1. If at both ends of the edge es, colour ¢; 1s unused, then the colour of e; can
simply be changed to ¢;. Otherwise the logic used in the algorithm COLOUR
can be adapted. The largest path of unlocked edges containing the edge e, and
coloured alternately with ¢; and ¢, is found. The two colours on the path are
exchanged making e; having the same colour as e;. Then ej is locked. This
process is repeated until all edges are locked. The edges with colour ¢; are
then removed and the process repeated on the remaining graph. In this way
edges with similar weights are coloured with the same colour. The detailed
algorithm is as follows, where

c¢(e) = the colour of edge e,

E(G) = the set of edges of a graph G,
Ej, = the set of locked edges,

Ey = the set of unlocked edges.

The algorithm starts with the graph G, and first colours it with the algorithm
COLOUR.

Algorithm REDUCE

- step 1 Edge-colour the graph G with algorithm COLOUR.

- step 2 Let E, =0, Ey = E(G).

- step 3 If Ey = () then terminate, otherwise let e; be the edge in Ey with
the largest weight. let ¢; = c(e1), Er = Ep U {e1}, By = Ev \ {e1}.

- step 4 If Ey = () go to step 7, otherwise let e, be the edge in Ey with the
largest weight, let ¢y = c(e3).

- step 5 If ¢; = ¢; then Ep, = Ep U{ex}, Ev = Ey \ {e2}, go to step 4.

- step 6 Find the largest path that contains e; and is coloured with ¢; and
¢y alternately. If the path contains locked edges, then let Ef = Er U{e,},
Ey = Ey \ {ez2}, go to step 4. Otherwise exchange the colours ¢; and ¢,
on the path, let Ep = E; U{ex}, Ev = Ey \ {ea}, go to step 4.

- step 7 Remove the edges with colour ¢; from the graph. Rename the
remaining graph as G, go to step 2.

This algorithm is a descent algorithm, in the sense that given a colouring
scheme of a graph, applying REDUCE to it will always produce a colouring
scheme with a cost not more than that of the original scheme. In the actual
implementation of the algorithm, if the cost is reduced, then the algorithm is



restarted on the new coloured graph. This process is repeated until no further
reduction is possible.

An example is given by the graph in Figure 2 (a). The process of applying
REDUCE to the graph is shown in Figure 3. As a further example, applying
the algorithm to the scheduling scheme of Table 4 gives the scheduling scheme
given by Table 5, the cost is reduced from 36 to 26 — a significant saving.

When the algorithm REDUCE terminates, it is not necessary that a global
minimum has been found. For that reason we will also test an algorithm which
takes the best result for ten runs of the algorithm REDUCE, each run starts
with a randomly permuted edge and vertex indices. This algorithm is denoted

as REDUCE10.

The three algorithms are applied to the communication task graphs result-
ing from partitioning five meshes of various sizes using a spectral bisection
algorithm. The number of colours and the cost of the colouring scheme gen-
erated by the three algorithms are given in Table 6.

From Table 6 it is clear that both the algorithms REDUCE and REDUCE10
improve significantly the cost of the colouring scheme given by the

algorithm COLOUR.

3 Simulation on a Parallel Computer

In this section the scheduling schemes given by the edge-colouring algorithms
are applied in organising the communication for an irregular mesh based cal-
culation. Simulations were done on 16 nodes of a Intel iPSC/860 parallel com-
puter using the scheduling schemes to evaluate the practical effect of the edge-
colouring algorithms.

On the Intel, there are two ways of sending and receiving messages. When the
blocked (or synchronous) send/receive subroutines csend/crecv are called,
the program does not leave the calls until the sending/receiving action is
completed. When the unblocked (or asynchronous) send/receive subroutines
isend /irecv are called, the program immediately leave with a message id,
and carries on executing other parts of the code. A msgwait subroutine with
the appropriate message id can be called at a later stage to make sure that
the messages have been actually sent/received.

On an Intel iPSC/860, the communication time needed to csend/crecv a



message is a linear function of the length. More specifically [6],

. 73+ 0.42 xn, if » <100, (1)
175 +0.36 xn, if n > 100,

where t is the communication time in microseconds, = is the number of bytes in
the message. In the above model the effect of the distance between processors
and possible link contention are not included.

Given a scheduling scheme such as that of Table 5, generated by an edge-
colouring algorithm, the pseudo code for the synchronous pair-wise exchange
type communication scheme on any processor me is

do 7 = 1, num _stages
csend/crecv message of length msglen(me, 1)
to/from processor adjproc(me,1)
synchronisation

end do

Thus the communication is done in a number of stages, at each stage a
processor pair exchanges messages, and this is followed by a synchronisation.

The cost given by a colouring scheme, such as those presented in Tables 4 and
5, are just predictions of the actual cost that the scheduling scheme might give.
In order to see if these predictions have any significance in practice, simulations
have been run on the Intel 1860 hypercube. Two meshes are considered and five
partitioning algorithms [7] are used to partition each mesh into 16 subdomains.
For each partitioning, three message passing schemes are generated using the
three scheduling algorithms COLOUR, REDUCE and REDUCE10. The five
partitioning algorithms used are: the recursive coordinate bisection (RCB) ,
the recursive graph bisection (RGB), the recursive spectral bisection (RSB)
(see, e.g. [11]) for these three algorithm), the KL algorithm [9] and a hybrid
algorithm of KL and RGB, which is called MINGRAPH [7].

For each shared face between two subdomains, it is assumed that 10 double
precision numbers need to be exchanged. Thus for example, in Table 4, node 7
exchanges 30 double precision numbers with node 4 at stage 1, and 40 double
precision numbers with node 13 at stage 2, etc.. After each stage, a global syn-
chronisation step is executed by calling the Intel 1860 FORTRAN subroutine
gsync(), to ensure that each node has finished sending and receiving data,
before proceeding to the next stage. The message passing is repeated 1000
times, and the communication time is taken to be the elapsed time between
the start and the finish of the message passing. In Table 7, the number of



stages, the communication costs (predicted) and the actual communication
time (in milliseconds, or ms for short) recorded in the simulation are repor-
ted. For the partitioning of the 788 mesh given by the recursive coordinate
bisection, Algorithm COLOUR gives a message passing scheme with 7 stages
and a predicted communication cost of 47 units. The actual communication
time is about 8.4 seconds. This can be reduced to about 7.0 seconds by using
Algorithm REDUCEIO. In general, Table 7 illustrates that the predicted costs
reflect the trend of actual communication times very well, and that the pre-
dicted reductions of communication costs by the Algorithms REDUCE and
REDUCEI1Q are actually delivered in the measured communication time.

It 1s also interesting to compare the communication time given by various
partitioning algorithms. The recursive coordinate bisection algorithm (RCB)
on the 5520 mesh needs at least 35 seconds, almost 3 times greater than the
best communication time given by the MINGRAPH algorithm. The parti-
tioning algorithm KL performs badly on the 788 mesh, mainly because the
algorithm generates disconnected subdomains which border a greater num-
ber of neighbouring subdomains. This increased the number of stages for the
communication, therefore the start-up and synchronisation costs.

It is interesting to relate the communication time in Table 7 to formula (1).
The synchronisation costs for one call of the synchronisation routine gsync()
on a 16 node configuration of the Intel is found to be about 530 microseconds.
Assuming no link contentions, the communication time (ms) for executing k&
stages of synchronous pair-wise exchange 1000 times is

k
t=202%k+0.36 %Y n;+ 530 % k, (2)

=1

where n; is the maximum number of bytes of message transferred in stage :. For
example, in Table 5, the maximum number of shared edges at each stage is 6,
8, 6, 6 and 10 respectively. Thus if 10 double precision numbers are transferred
for each shared edge, then the message length will be 480, 640, 480, 480 and
800 bytes respectively, so t = 5226 ms. For the communication task given by
Table 6, we calculated that ¢ = 4939 ms. These figures are proportional but
less than the actual communication time (6286 ms and 6052 ms) found in
Table 9. The under-prediction is probably due to the link contentions. In both
cases, because the message lengths are short, the start-up and synchronisation
account for majority of the time.

For large meshes, the start-up and synchronisation costs are less dominant.
For example on the partitioning of the mesh-5520 using RSB, the message
passing algorithm COLOUR gives a scheme of 5 stages, with a sum of largest
message lengths of 385. This gives a calculated ¢ = 14748 ms. The message
passing Algorithm REDUCEI10 gives a scheduling scheme of 4 stages with a
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sum of largest message lengths of 216, and a calculated ¢ = 9148 ms. Again
the two calculated timings are proportional to, but under estimate the actual
communication times (which are 22200 ms and 15010 ms respectively, from
Table 9). Between 25—32% of time is spent in the start-up and synchronisation.

4 Effect of the Scheduling Algorithms on the Finite Element Code

The scheduling algorithms are implemented in an explicit unstructured finite
element Euler solver code FELISA (Peiro et al.). The code was run on a

number of parallel platform, including the Intel iPSC/860 and the Cray T3D.

Apart from the synchronous communication scheme discussed in the previous
sections, there are many alternative ways of organising the communication.
The following is an asynchronous communication scheme, which uses the
asynchronous communication subroutines isend /irecv available on the Intel.

do 7 = 1, num_neighbours
irecv message of length msglen(me,neighbour(z)) from processor
neighbour(z), message id msg(z)

end do

do 7 = 1, num_neighbours
isend message of length msglen(me,neighbour(z)) to processor
neighbour (i)

end do

do 7 = 1, num _neighbours
call msgwait(msg(z))

end do

In the above code, the asynchronous receive is posted first, followed by
sending the messages to all the neighbours. Finally a message waiting
subroutine is called to ensure that the messages are received. The advantage
of this asynchronous communication scheme, compared with the synchronous
scheme detailed in the last section, is that there is no need to organise
the communication in a pair-wise fashion. Furthermore no synchronisation
is needed, and a processor can carry on its computation as soon as it
has received messages it needs, without waiting for other processors to
finish. The disadvantage is that the receiving/sending buffer space can
not be reused. For example the receiving buffer space needed will be the
sum of the message lengths from all the neighbouring processors, while if
synchronous communication is used then the receiving buffer size needed is
the largest message length to be expected from neighbouring processors. The
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asynchronous communication is not supported on all parallel platforms, thus
a program uses asynchronous communication would be less portable than one
that uses synchronous pair-wise exchange.

The asynchronous algorithm, and the synchronous algorithm combined with
the two edge-colouring algorithms COLOUR and REDUCE, are compared as
communication schemes for the finite element code. The particular problem
solved 1s the flow field around a aircraft, the mesh has 353710 tetrahedra. The
mesh is partitioned using the spectral bisection algorithm into subdomains
with equal numbers of tetrahedra. The finite element code takes 1173 iterations
to converge.

It is noted that although each subdomain has an equal number of tetrahedra,
the time spent on computing is found to vary between different processors.
This is because for the particular finite element code used, the amount of
computation on each processor is not only related to the number of tetrahedra
on the subdomain, but also to other factors such as the number of boundary
points. The latter are difficult to control statically. If the communication
time tcomm 1s defined as the total elapsed time ¢;4:5 for the code minus the
computation time, then the communication time also varies. This variation is
due to the time spent in waiting. For the synchronous communication schemes,
each processor has to wait for all the processor to finish computing before
communication can begin, and it also has to wait for all processors to finish
communication before further computation can start. For the asynchronous
schemes a processor needs to wait for its neighbouring processors to finish
computation before it is able to receive messages from them, but can carry on
its computation as soon as it has received the messages it needs, even if other
processors are still communicating or waiting. Asynchronous communication
schemes have the ability to overlap computation with communication, which
reduces the total execution time of running the program.

The communication time (including waiting time) thus varies between
processors. In order to give an indication of the proportion of the
communication (and waiting) time to that of the total elapsed time, in
Table 8 tiota1 and the averaged/minimum/maximum {comm are reported.
For the synchronous communication, the optimised edge-colouring algorithm
REDUCE is able to reduce the total time of the finite element code by 8-13%.
When asynchronous communication is used, a further reduction of 14-30% can

be found.
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5 Conclusions

In this paper algorithms have been implemented to generate edge-colouring
schemes for graphs, which need at most deg + 1 colours, where deg is the
degree of the graph. An algorithm which attempts to minimise the sum of
largest weight has been suggested.

The algorithms were used to organise communication for irregular grid
type applications. The optimised algorithm was found to improve the
communication time of the synchronous communication scheme. Synchronous
and asynchronous communication schemes were also compared and it was
found that the latter reduces the total elapsed time of running a finite element
code, at the expense of increased communication buffer size and reduced
portability of the code.

Parallel KL algorithm for mesh partitioning is a potential application of the
graph edge-colouring algorithms presented in this paper which deserves further
investigation.
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Figure 1 (a) Partitioning of a mesh into 4 subdomains using recursive
coordinate bisection
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Figure 1 (b) Corresponding communication task graph of Figure 1 (a)
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Figure 2 Two scheduling schemes of the same communication task.
(a)communication cost = 6 + 6 + 5 = 17,
(b) communication cost =6+ 145 = 12.

17



1 (6) 2 (€))
c, C,
4) 1 (@)
c 2 c 3
6 @ 5 (%)
(@
1 2 @
c 3
®| c, 5| @D
c 3
6 5 5)
()
1 (6) 2 @
c 1 c 3
4) > (@)
C 1 C 3
6 @ 5 (5)
e

(6)

(6

1 (6 2 @ 3
«ry Cs
@ c C,|1@® @ (6)
c 2 c 3
6 @ 5 ) 4
(b)
1 2 [€)) 3
c 3
“ @ c,| @ =
6 5 5) 4
(d)

Figure 3 Applying algorithm REDUCE to a communication task graph.
(a) Communication cost=6+6 + 5 = 17;
(b) e1 = (3,4), e2 = (1,2), path=1, 2, 5, 6. Exchange colours ¢; and ¢,

on the path. Lock e; and ey;

(c) No more improvement possible. Remove colour ¢;;
(d) e1 = (5,4), e2 = (1,6), change colour of e; to c3. Lock e; and ey;
(e) No more reduction possible, final scheme with communication cost

=6+1+5=12.
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Table 1 A communication task table

Processor jadjproc (msglen)
1 | 209) [4(n)] —
2 | 1(9) [3(14)] 4(2)
3 |2(18)] 4(7)

1 17| 2(2) [3(7)

Table 2 A scheduling scheme

Processor jadjproc (msglen)
1 |29)[asan)] —
2 |1(9)[3(14)] 4(2)
3 4(7)|12(14)] —
4 3(N)(1(17)| 2(2)
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Table 3 A communication task table
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Table 4 An initial scheduling scheme
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Table 5 A scheme with reduced communication cost

Processor adjproc (msglen)
1 2@ — [ = [ = [9@2)
2 3(3) [11(3)[10(1)[13(6)| —
3 23) [12(1)] — [10(2)] 11(8)
4 — — 1 7(3) [14(5)| 15(6)
5 10(4)| — - 19(2)| -
6 16(4) — | — [11(4)] 12(5)
7 13(4)[102)] 4(3) | — | 14(6
8 - - — [15(6)| 16(6)
9 - - — 15(2)| 1(2)
10 5(4) | 7(2) [ 2(1) | 3(4) [13(10)
11 ~T23) [12(2)] 6(2) | 3(8)
12 1(2) | 3(1) [11(2)|16(6)] 6(5)
13 7(4) [143)] — | 2(6) [10(10)
14 — [13(3)| — |4(5) | 7(6)
15 — - — | 8(6) | 4(6)
16 6(4) | — — [12(6)| 8(6)

max. msglen| 4 3 3 6 10

comm. cost 26
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Table 6 Comparison of three edge-colouring algorithms by the “number
of colours/cost”, on the communication task graphs resulting from the
partitioning of five meshes using a recursive spectral bisection algorithm.

p is the number of sudomains

p | Mesh |COLOUR|REDUCE|REDUCE10

16| 771 | 6/44 6/34 6/30
16| 788 | 5/36 5/26 5/25
16 | 3564 | 6,74 6/59 5/56

16 | 5520 | 5/385 | 4/216 4/216

32 (353710| 17/4678 | 17/2042 | 17/2028
64 |353710| 28/4140 | 28/1853 | 28/1823
128(353710| 36/3433 | 36/1214 | 36/1196
256|353710| 37/2715 | 37/930 | 37/902
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Table 7 Predicted and simulated communication costs*

Par. methods|Mesh| COLOUR | REDUCE |REDUCE10
RCB 788 | 7/47/8423 | 6/35/6958 | 6/31/6992
RCB 5520 |7/842/45582|7/666/40006 |7/521/35662
RGB 788 | 6/47/7580 | 5/34/6103 | 5/32/5975
RGB 5520 |7/598/33528|7/511/30266 |7/427/28418
RSB 788 | 5/36/6286 | 5/26/6052 | 5/25/5634
RSB 5520 |5/385/22200(4/216/14778 |4/216/15010
KL 788 110/52/10935| 9/36/9424 | 9/36/9366
KL 5520 |6/326/20345|6/263/19170 |6/256/18471

MINGRAPH| 788 | 6/40/7230 | 6/29/6838 | 6/28/6505

MINGRAPH| 5520 [4/209/14136|3/189/13582|3/189/13020

* Simulation: message passing 1000 times using the schemes given by the three
scheduling algorithms on the partitions generated with the five partitioning
methods. For each shared face between two subdomains 10 double precision
numbers are exchanged. The results are reported in the form

number of stages/communication costs (units)/communication time (ms)
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Table 8 The total elapsed time tio1a1 and and communication (including
waiting) time fcomm for the finite element code to converge on a mesh around
an aircraft, three communication schemes are compared. p = 32 and 64 is
the number of processors.

p |comm. scheme| tiotal |tcomm (average/min/max)
32| COLOUR ([7922.70|3528.76/2046.63/4052.41
32| REDUCE |7255.69|2854.82/1376.33/3406.18
32| asynchronous (6239.69| 1775.78/289.56/2334.00
64| COLOUR |5560.26|3437.08/2624.29/3837.24
64| REDUCE |4843.32|2721.01/1919.71/3112.97
64| asynchronous (3373.56| 1169.84/357.39/1574.72
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