The Optimal Property of Polynomial Based
Diffusion-Like Algorithmsin Dynamic L oad
Balancing

Y.F. Hu and R.J. Blake!l

Abstract. Diffusion type algorithms [1, 3, 13] are some
of the most popular algorithms for scheduling in dynamic
load balancing. In the paper it is proved that all diffusion-
like algorithm has an interesting minimum norm prop-
erty in the sense that the weighted Euclidean norm of the
amount of load migration generated by the algorithm is
minimized.

1 INTRODUCTION

One of the most important issue in the efficient use of
parallel computers is that of load balancing. For many
applications the load changes during the course of com-
putation, making it necessary to balance the load dynam-
icly, and in parallel.

Most of the existing parallel dynamic load balancing
algorithms [14, 4, 12] involve two steps:

e “flow” calculation: finding out the amount of load to
be migrated between neighboring processors, such that
a uniform load distribution will be achieved when the
migration is carried out to satisfy the “flow”.

e migration: deciding which particular tasks are to be
migrated, and migrating these tasks to the appropriate
neighboring processors.

This paper is concerned with algorithms for the first
step (but see [14, 4, 12] for possible strategies of the sec-
ond step). Diffusion type algorithms [1, 3, 13] are some
of the most popular ones for flow calculations, although
there are a number of other algorithms [9, 3, 15, 16, 8].

1 Daresbury Laboratory, Daresbury, Warrington WA4 4AD,
United Kingdom, Tel. +44 (0)1925 603362, Fax +44 (0)1925
603634, e-mail: YFHu@dl.ac.uk

© 1998 Y. F. Hu and R. J. Blake
ECCOMAS 98.
Published in 1998 by John Wiley & Sons, Ltd.

To illustrate the “flow” calculation step, Figure 1 (a)
shows a processor graph, the load on one of the proces-
sor is 32, twice higher than that of the others. Figure 1 (d)
shows the “flow” along each edge of the processor graph
(rounded to integers in brackets), calculated using 3 it-
erations of a diffusion algorithm. Figure 1 (e) show the
load of each processor after the flow is satisfied.

Figure 1. (a) the first iteration of the diffusion algo-
rithm on a processor graph with load imbalance; (b) the
second iteration of the diffusion algorithm; (c) the third
iteration of the diffusion algorithm; (d) the “flow” along
each edge after 3 iterations (figures in the brackets are
rounded to integer); (e) the load of each processor after
the “flow” is satisfied

The “flow” calculation problem usually has many so-
lutions. To minimize the communication cost, it is impor-
tant to choose a solution that involves as little load migra-
tion as possible. In [9], an algorithm based on minimizing
the Euclidean norm of the amount of load migration was
introduced. It was demonstrated to converge much faster
than the diffusion algorithm of [1, 3]. However, numer-
ical experiment [9] shown, some what surprisingly, that
the Euclidean norm of the “flow” produced by the diffu-
sion algorithm were very close to those of the new algo-
rithm. It was believed that the diffusion algorithm may
also satisfy some optimal property. In this paper this con-
jecture is proved for a general class of diffusion algorithm
based on the polynomial of the weighted Laplacian ma-
trix.

The conventional diffusion algorithm [1, 3] and a more
efficient new algorithm [9] are introduced. The gener-
alise diffusion-like algorithm based on the polynomial
of the weighted Laplacian matrix is then presented. Fi-
nally the optimal property of the diffusion-like algorithm
is proved.

1 SOME “FLOW” ALGORITHMS
Notations

Let p be the number of processors. Denote the processor
graph by the graph (V, E), with |[V| = p vertices and
|E| edges. Each of the vertices V. = (1,2,...,p) rep-
resents a processor, and E is the set of edges. The graph
is assumed to be connected. Denoting i <> j if vertices
i and j form an edge of the processor graph. Associated
with each processor i is a scaler 1; representing the load
on the processor. The average load per processor is
1= f:l li.
P

Each edge has a direction associated, say from the ver-
tex with smaller index to the vertex with larger index. The
former will be called the head and the latter the tail of
the edge. The amount of load to be transferred on the i-th
edge (along the direction of the edge) is denoted as 6.

Denote

b=(0L-LL-1,...,1,-DF 1)
the vector of load imbalance, and
X = (614025 .- -405))"

the vector of “flow” along each of the edges.

Section Title

The vertex-edge incident matrix A [11], which is of
the dimension |V| x |E|, is defined as
if vertex i is the head of edge j,

1,
(A)i; = { -1, if vertex i is the tail of edge j,
o, otherwise.

(@3]

vy vz

Figure 2. (a) a graph; (b) a load migration scheme; (c)
another scheme

For example, for the graph in Figure 2 (a), the vertex-
edge incident matrix is

1 0 1
(-1 1 0) . 3)
0 -1 -1

Definition 1 The “flow” calculation problem for dynamic
load balancing problem is that of finding a schedule which
gives the amount of load dx to be transferred along any

edge k (also called the “flow” along the edge k), such

that after the transfer, the load of each processor will be

the same. In other words,

L —Zsij =%, i,jevV,
iej
or
Ax = b. 4)

Here §3; denotes the ““flow” from vertex i to vertex j.

For example, for the graph in Figure 2 (a), the matrix
A is given by (3), thus equation (4) becomes

01+d03 = 11— i,
—01+d2 = lp— I,
—§1—-863 = 1l3-1L
2 Y. F. Huand R. J. Blake

The vertex-edge incident matrix A is of the dimen-
sion |V| x |E|. Because there are usually more edges
than vertices in a graph, the linear system (4) is likely
to have many solutions. For instance consider the graph
in Figure 2, with the load as specified in the Figure. The
schedules given by both Figure 2 (b) and Figure 2 (c) are
valid. But schedule (c) is preferred as it involves less data
movement.

The diffusion algorithm

The diffusion algorithm, as presented in [1, 3], is intro-
duced as follows. Each iteration, a vertex sends load to
its neighbors, the amount of which being proportional to
the difference of its load and the neighbors’ load.

Notice that this load migration is not actually carried
out. Rather, it is recorded and the accumulated load mi-
gration along each edge is used as the “flow” on con-
vergence of the diffusion algorithm. This is because the
diffusion algorithm may take many iterations to converge
and to carry out an actual migration of load each iteration
would incur a large amount of communication and book
keeping cost. Separating the “flow” calculation from the
actual migration of load would be more economical.

At iteration k + 1 of the diffusion algorithm, the new
load l§k+1) of a vertex i is given by the combination of
its load at the iteration k, and those of its neighboring
vertices, namely

k+1 k
li() li()

- Zcﬁa?‘) —1¥), L,jeV.

iej

Here c;; is a weight associated with the edge (i,j).
Initially the load for vertex i € V is li(l) = ;. One ad-
vantage of the diffusion algorithm is that every processor
only needs to know the load of its neighboring processor.
No global communication is necessary.
For a choice of the weights in (5), Boillat [1] suggested

1
7 max {deg(i),deg(G)} + 1’

iej L,jev,
where deg(i) is the degree of vertex i, defined as the
number of edges connected to the vertex.

For example, because each vertex of the graph in Fig-
ure 1 (a) is of degree 3, the weight of each edge is 1/(1+
3) = 0.25. At the first iteration, the processor with the
load of 32 will send to each of its neighbors a load of
0.25 * (32 — 16) = 4. Figure 1 (b) shows the processor
graph at the second iteration, and Figure 1 (c) the third it-
eration. The accumulated “flow” of these three iterations
are shown in Figure 1 (d), where the “flow” rounded to

Section Title

the nearest integer is shown in brackets. The resulting
load of each processor, after this integer “flow” is satis-
fied, is shown in Figure 1 (e).

Defining the induced graph as the original graph but
with edges (i,j) removed if the weight ¢35 = 0, it can be
proved [3] that the above diffusion algorithm will con-
verge to the uniform distribution if the following assump-
tion holds.

Assumption 2 The diffusion algorithm (5) is assumed to
satisfy the following:

c; >0, fori<j;
Ej: iy S < 1, forie€ V;
Cij = Cji;

the induced graph is connected.

The matrix form of the diffusion algorithm

Let

k) q(k Kk
y® =0,)T, k=12,
be the vector of load at iteration k. The diffusion algo-

rithm (5) can be stated in matrix form as

y(k+1) — y(k) _ Ly(k) =(1-L) y(k) (6)

where L is the (weighted) Laplacian matrix, a |[V| x |V
symmetric matrix given by

—Cij» ifi#ji+]
(L) = Zh—»k Cik, if i=j,
o, otherwise.

Now defining the edge-weight matrix W' as the diago-
nal matrix of dimension |E| x |E|, with the i-th diagonal
element equals to the weight ¢ associated with the i-th
edge. Then it can be confirmed that the Laplacian matrix
L can be expressed as the product of vertex-edge incident

matrix and the edge-weight matrix, that is,
L=AWA"T, %)

For example, for the graph of Figure 2, one has

1 0 1 ci 0 O
AWAT = —1 1 0 0 c2 O
-1 0 0 cs3
1 -1
0 1
1
c1 +c3 —C1 —Cs3
= C1 C1 +c2 —C2
—C2 c1 +c2
= L.
3 Y. F. Huand R. J. Blake

A more efficient algorithm [9]

Assuming that the Euclidean norm of the data movement
is used as a metric, then to minimise the data movement,
the following problem need to be solved

P S
Minimise —x"W 'x,

subjectto Ax =b.

Here W is a positive diagnol weight matrix.
Applying the necessary condition for the constrained
optimization problem (see [5]) gives

x=WAT4, (®)

where d is the vector of Lagrange multipliers. Substitut-
ing (8) into Ax = b gives

Ld = b, ©)

with L = AWAT the weight Laplacian matrix.

Thus the problem of finding an optimal load balancing
schedule is transformed to that of solving the linear equa-
tion (9). Once the Lagrange multipliers are found, then
the load transfer vector is x = A Td. For any graph, each
row i of the matrix AT only has two nonzero, 1 and —1,
corresponding to the head and tail vertices of the edge e;.
Therefore the amount of load to be transferred from pro-
cessor ji to processor jz (assuming ji is the head and j2
the tail), along the edge e; = (j1,j2), is simply

0i = dj; —dj,,

where dj, and dj, are the Lagrange multipliers associ-
ated with vertices j; and jo respectively.
Therefore the new load balancing algorithm is:

e 2a) find the average work load, and the load imbalance

It is well known (see, e.g., [2]) that the Laplacian ma-
trix is positive semi-definite. It has an eigenvalue of zero
associated with the eigenvector of all ones, and if the
graph is connected, the rest of the eigenvalues are all pos-
itive. The conjugate gradient algorithm will converge in
less than k iterations, where k is the number of distinc-
tive positive eigenvalues of matrix L (see [5] for the the-
ory of conjugate gradient algorithm). Clearlyk < p—1.

In fact p — 1 is a pessimistic estimate of the iteration
numbers needed for the new algorithm (combined with
the conjugate gradient) to converge. For many graph with
rich connectivity the algorithm converges a lot faster. Some
analysis of the algorithm on many regular graphs (meshes,
hypercubes etc.) can be found in [9].

The following table compares this algorithm with the
diffusion algorithm, where “D” stands for the diffusion
algorithm and “P” stands for the above algorithm. They
were tested on 5 random graphs of 256 vertices, with
average degree ranging from 2 to 9. The result from a
Cray T3D clearly indicated that the diffusion algorithm
was not efficient for graphs of low connectivity (small
degree), while the new algorithm performed well on all
graphs. The is also interesting to noted from Table 1 that
although the new algorithm was design to minimize the
norm of the “flow”, in reality the Euclidean norm of both
algorithm are close to each other, indicating that the dif-
fusion algorithm may also has some optimal property.
This conjecture will be proved in the next section in a
more general form. In fact from Table 1, in some case
the diffusion algorithm even has a smaller norm, this ab-
normality is due to the fact that the norm in this table is
the sum of the squares of the flow along each edge after
they are rounded to integer. When the norm of the float-
ing point “flow” is considered, the new algorithm does
always give a smaller or equal norm.

Table 1 Comparing the new algorithm with the diffusion
algorithm on the 256 processors of a Cray T3D

vector b.

method diameter degree iterations time(ms) norm

e b) solve linear equation (9) for d, with L the Laplacian P 152.70 2.00 222 218.4 106867

matrix; D 152.70 2.00 40044 11884.4 105003

e ¢) the “flow” between processor j1 and jz is dj; —dj, . p 12.40 3.11 33 333 23190
D 12.40 3.11 201 739 23274

If we call the vector d the vector of potential, then Step c) P 7.30 01 17 20.6 15085
s PP D 7.30 5.01 75 34.0 15201

of the above algorithm says that the “flow” between two P 550 =00 15 137 11506
processors are the difference of their potential! D 5.50 700 1 238 11594
The linear system (9) can be solved by many standard P 430 9.00 2 163 9749
numerical algorithms. The conjugate gradient algorithm D 4.30 9.00 33 20.7 0812

[6] was used in [9]. The algorithm is simple, easy to par-
allelise and converges fast. For preconditioning the diag-
onal of the Laplacian can be used.

Section Title 4 Y. F. Hu and R. J. Blake

3 AN OPTIMAL PROPERTY OF THE
DIFFUSION-LIKE ALGORITHM

Itis seen in Section 1 that the “flow” calculation problem
usually has more than one solutions. From the point of
view of minimizing the communication cost, a solution
that involves small amount of load migration (such as that
of Figure 2 (b)) is clearly preferable to one that involves
a lot of load migration (such as that of Figure 2 (c)).

As defined in Section 1, let x be the vector of load mi-
grations. To minimize the amount of load migration and
achieve load balance at the same time, it is necessary to
find a “flow” solution x such that Ax = b and the norm
of x, as a measure of total load migration, is minimized.
It shall be prove in this section that the “flow” given by
the diffusion algorithm in fact minimizes the weighted
Euclidean norm of the load migration, xTW1x, with
‘W the edge-weight matrix defined in Section 2.

General diffusion-like algorithms

From (6), using the diffusion algorithm, each iteration the
load can be expressed as

y(k+1) _ (I _ L)ky(l), k = 1,2, e (10)

Atiteration k+1 of the diffusion algorithm, the amount
of load transferred, from vertex ji to vertex jo, equals to
the load difference between the two vertices, scaled by
the edge weight. That is,

k k k
6i() = Cjija * (lj(l) - l_§2))'
In matrix form this is

x® = W AT y®, (11

where

x®) = (69‘),59‘), cee aéf;?)'r

is the vector of migrating load along all the edges at iter-
ation k.

In the easy to confirm, using (11) and (7), that the
difference of the load at two subsequent iteration equals
to the vector of migrating load multiplied by the vertex-
edge incident matrix:

y(k+1) _ y(k) _ Ax(k) (12)
We define the diffusion-like algorithm to be
y* = pe(@)y?, k=12,... (13)

where px (x) is the k-th order polynomial, and px (0) =
1. This is clearly a generalisation of (10), and there is a

Section Title

good reason in this generalisation. By utilisaing this gen-
eral formula, it is possible to construct diffusion-like al-
gorithm which converges faster than the orginal diffusion
algorithm, yet retains the nice property of the diffusion
algorithm in that only nearest neighbor communication
is needed [10].

Similar to (12), the vector of load migration, x(k), for
the generalised diffusion algorithm (13) can be derived
as follows:

y* — y® = (pr(L) — pr-1(L))pr(L)y™

Because the polynomials satisfies pix(1) = 1, the differ-
ence between them can be expressed as

Pk(L) - pk—l(L) = qu—l(L)

where qi—1 is a polynomial of order k — 1. Define the
vector of load migration to be

x = WAT qu_1 (L)y,

then equation (12) is again satisfied.

The optimal property of the diffusion-like
algorithms

The accumulated load migration (the “flow”) given by
the diffusion-like algorithm is

oo
(1)
; x

It was proved [3] that under assumption (2), the diffu-
sion algorithm will converge to the uniform load.

If we assume that the diffusion-like algorithm (13) also
converges ™) = y), then it is possible to prove that
the “flow” given by this general diffusion-like algorithm
is optimal in the following sense:

Theorem 3 The load migration scheme generated by the
diffusion-like algorithm is the solution of the following
minimization problem

Min.imise %xwalx, (14)
subjectto Ax =Db.

Here it is assumed that the weight associated with each

edge is positive so that W 1 exists. The matrix A is the

vertex-edge incident matrix defined in (2) and the vector

b is the vector of load imbalance (1).

5 Y. F. Hu and R. J. Blake

Proof

We first prove that the accumulated amount of load
transfer.

Because

y*) —y® = Law_1 (L)y®

Define d® = Y | qi_1(L)y " as the potential vec-

tor, then
y(l'=+1) _ y(1) — LdW

Let d® = d® — (eTd™)e be the normalized po-
tential vector (with a sum of zero), where e is the vector
of all ones, then

y(k+1) _ y(l) = Ld® (15)
Expand d® using the normalized eigenvectors of L,
because d™ is orthogonal to the eigenvector u; = e,

V]
a® =3 o,
i=2

Substituting to (15) gives

V]|
YO =y = 3 Na®us.
i=2

Thus

v ,
13 =3 () < Iy -y Pl .

i=2

Since y(k"'l) converged to the uniform load, it follows
that ||[d®|| is bounded. So there exists a subsequence
{k;} such that
d*) 4.
Because of (15), Ld = y(® —Ie, so
L(d™ -d) =y® -Ie 0.

It can now be proved that d® converges to d, as fol-
lows. The vector d®) — d is orthogonal to the eigenvec-
tor u; = e. Expanding d®) — d using the rest of the
eigenvectors of L gives

4
d® _g= Zbgk)ui.
i=2

Multiplying both side with L, it follows that

4
Zbi(k))\iui =L (El(k) — a) — 0.

i=2

Section Title

Therefore
V| 2
3 (50)" o,
i=2

ord® —d

Since the vector of load migration is
x) = WA g1 (L)y®,

the accumulated load migration converges:

k Kk
D0 = WATQ aa(Ly®)
i=1 i=1
WATd®
WATd®
- WATd

Let x = limk_yoo x®) = WATAd be the accumu-

lated load, by (15),

Ax=AWATd=Ld ==y -y =b (16)

Equation (16) is the necessary and suffcient condition
[5] for x to be the minimum of the linearly constrained
quadratic optimization problem (14)

O

Theorem 3 substantiates the conjecture at the begin-
ning of this paper, that because the Euclidean norms of
the “flow” of the diffusion algorithm were quite close to
those of the new load balancing algorithm in numerical
experiment [9], it may also satisfy some optimal prop-
erty.

Because the miminum of the optimization problem (14)
is unique under assumption (2), from the above theorem
we can also conclude that the flow calculated but any dif-
fusion algorithm of the form (13) is equivalent!

Discussions

In this paper it was proved that the “flow” calculated us-
ing any diffusion-like algorithms are equivalent, they all
minimizing the Euclidean norm of the “flow”.

Even though diffusion algorithms have this optimal
property, they are not always efficient. The diffusion al-
gorithm, in its orginal form, was known to suffer from
poor convergence on graphs that is not rich in connectiv-
ity [1, 3, 9]. Effort has be made to improve the orginal
diffusion algorithm while retaining its advantage of near-
est neighbor communication [7, 10]. The result of this
paper reassures that, any diffusion-like algorithm which
are based on polynimials of the Laplacian will possess
the same optimal property.

6 Y. F. Hu and R. J. Blake

REFERENCES

(1]

(2]
(3]

[4]

(5]

(6]

(7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

J. E. Boillat, Load balancing and Poisson equation in a
graph. Concurrency: Practice and Experience 2 (1990)
289-313.

N. Briggs, Algebraic Graph Theory. Cambridge University
Press, Cambridge, 1974.

G. Cybenko, Dynamic load balancing for distributed mem-
ory multi-processors. J. Parallel Distrib. Comput. 7 (1989)
279-301.

R. Diekmann, D. Meyer, B. Monien, Parallel decomposi-
tion of unstructured FEM-meshes Concurrency: Practice
and Experience 10 (1998) 53-72.

R. Fletcher, Practical Methods of Optimization (John Wiley
and Sons, Chichester, 1987).

G. H. Golub and C. FE. Van Loan, Matrix Computations
(Johns Hopkins University Press, Baltimore, 1981).

A. Heirich and S. Tayler, A parabolic load balancing method,
International Conference on Parallel Processing, 1995.

G. Horton, A multi-level diffusion method for dynamic load
balancing, Parallel Computing 9 (1993) 209-218.

Y. F. Hu and R. J. Blake, An optimal migration algorithm
for dynamic load balancing, Preprint DL-P-95-011, Dares-
bury Laboratory, Warrington WA4 4AD, UK, 1995, to ap-
pear in Concurrency: Practice and Experience.

Y. F. Hu and R. J. Blake, Improving the diffusion algorithms
for dynamic load balancing, submitted to Parallel Comput-
ing, 1998.

A. Pothen, D. H. Simon and K. P. Liou, Partitioning sparse
matrices with eigenvectors of graphs, SAM J. Matrix Anal.
Appl. 11 (1990) 430-452.

K. Schloegel, G. Karypis and V. Kumar, Parallel multilevel
diffusion schemes for repartitioning of adaptive meshes,

http://www-users.cs.umn.edu/ karypis/metis/parmetis/main.html.

J. Song, A partially asynchronous and iterative algorithm
for distributed load balancing, Parallel Computing 20 (1994)
853-868.

C. Walshaw, M. Cross and M. Everett, Dynamic load bal-
ancing for parallel adaptive unstructured meshes, in: M.

Head eds, Parallel Processing for Scientifi c Computing (SIAM,

1997).

C. Z. Xu, and F. C. M. Lau, Analysis of the generalized
dimension exchange method for dynamic load balancing,
J. Parallel Distrib. Comput. 16 (1992) 385-393.

C.Z. Xu, FE. C. M. Lau, B. Monien and R. Liiling, Nearest-
neighbor algorithms for load balancing in parallel comput-
ers, Concurrency: Practice and Experience 7 (1995) 707-
736.

Section Title

Y. F. Hu and R. J. Blake

