
Extending the Spring-Electrical Model to Overcome Warping Effects

Yifan Hu∗

AT&T Labs – Research, 180 Park Ave, Florham Park, NJ 07932

Yehuda Koren†

Yahoo! Research

Haifa 31905, Israel.

ABSTRACT

The spring-electrical model based force directed algorithm is
widely used for drawing undirected graphs, and sophisticated im-
plementations can be very efficient for visualizing large graphs.
However, our practical experience shows that in many cases, lay-
out quality suffers as a result of non-uniform vertex density. This
gives rise to warping effects in that vertices on the outskirt of the
drawing are often closer to each other than those near the center,
and branches in a tree-like graph tend to cling together. In this
paper we propose algorithms that overcome these effects. The al-
gorithms combine the efficiency and good global structure of the
spring-electrical model, with the flexibility of the Kamada-Kawai
stress model of in specifying the ideal edge length, and are very
effective in overcoming the warping effects.

Keywords: Graph drawing, force directed methods, warping ef-
fect.

Index Terms: G.2.2 [Discrete Mathematics]: Graph Theory—
Graph Algorithms

1 INTRODUCTION

The spring-electrical model [8, 10] is widely used for drawing undi-
rected graphs. It is relatively easy to implement, and when com-
bined with the multilevel approach and suitable data structures (e.g.,
quad-tree) to approximate long range repulsive forces, is very effi-
cient and generally effective for large graphs [16, 19]. However,
it has a limitation that is often overlooked, but seriously hampers
its usefulness for real-world applications. It suffers from warping
effects in that vertices far away from the center of a layout tends
to be closer to each other, and branches in a tree-like graph tend to
cling together (see, e.g., Figure 1(a) and Figure 6(b)). These effects
are not usually noticeable on small graphs. But when applied to
large graphs, particularly those with many nodes of small degrees,
such as “small-world” graphs [30], the warping effects can be par-
ticularly pronounced, and can degrade the clarity of their drawing,
particularly the local details.

Another popular graph drawing method, the stress model [22],
is based on realizing given distances between vertices. In this ap-
proach, a cost function that is the difference between the physi-
cal distance of vertices and their ideal distance is minimized, with
the ideal distance determined from the graph theoretical distance
among vertices. This model achieves more uniform edge lengths,
thus avoiding the aforementioned warping effects. However the cal-
culation of graph theoretical distances among all vertex pairs makes
the computational complexity quadratic in the number of vertices.
The robustness and efficiency of this approach can be enhanced by
the stress majorization technique [14], or by combining it with a
multilevel approach [11, 17, 19]. Nevertheless the quadratic com-

∗e-mail: yifanhu@research.att.com
†Work done while this author was at AT&T Labs. e-

mail:yehuda@yahoo-inc.com

plexity means that this method is not suitable for graphs with more
than a few thousand vertices.

In this paper we propose two algorithms that overcome the warp-
ing effects of the spring-electrical model. Both algorithms act as a
post processing step, taking the layout from the spring-electrical
model as the input. At the heart of these algorithms is a cost func-
tion similar to the stress model, except that calculation of all-pairs
shortest path is avoided, and the matrices involved are all sparse,
thus the algorithms are computationally efficient.

2 GRAPH DRAWING ALGORITHMS AND WARPING EFFECTS

We use G = {V,E} to denote an undirected graph, with V the set of
vertices and E edges. Denote by |V | and |E| the number of vertices
and edges, respectively. If vertices i and j form an edge, we denote
that as i ↔ j, and call i and j neighboring vertices. We denote by
xi the current coordinates of vertex i in two or three dimensional
Euclidean space.

The aim of graph drawing is to find xi for all i ∈V so that the re-
sulting drawing gives a good visual representation of the connectiv-
ity information between vertices. Two popular methods, the spring-
electrical model [8, 10], and the stress model [22], both convert the
problem of finding an optimal layout to that of finding a minimal
energy configuration of a physical system.

The stress model assumes that there are springs connecting ver-
tices of the graph, with the ideal spring length equal the graph the-
oretical distance among vertices. The energy of this spring system
is

∑
i6= j

wij

(
∥

∥xi − x j

∥

∥−dij

)

2, (1)

where dij is the graph theoretical distance between vertices i and j,

and wij is a weight factor, typically 1/dij
2. The layout that min-

imizes the above stress energy is an optimal layout of the graph
according to this model. There are several ways to find a solu-
tion of the minimization problem. A force based iterative approach
can be used. Alternatively, a stress-majorization technique can be
employed, where the cost function (1) is bounded by a series of
quadratic functions from above, and the process of finding an op-
timum becomes that of solving a series of linear systems [14]; see
Section 5 for further details. Whichever method is used to solve
the model, the graph theoretical distance between all pairs of ver-
tices has to be calculated, making the computational complexity
quadratic in the number of vertices. There were attempts to spar-
sify the stress function by considering only a small portion of the
pair-wise distances (e.g., [4, 14]), however our experience with real
life networks was that these sparsification techniques often fail to
yield good layouts for “small-world” like graphs.

The spring-electrical model [8] represents the graph drawing
problem by a system of electrically charged vertices attracted to
each other by springs; vertices also repel each other via electri-
cal forces. Here, following [10], the attractive spring force exerted
on vertex i from its neighbor j is proportional to distance between
these two vertices,

Fa(i, j) =

∥

∥xi − x j

∥

∥

2

K
, i ↔ j,

where K is a parameter related to the nominal edge length of the
final layout. The repulsive electrical force exerted on vertex i from
any vertex j is inversely proportional to the distance between these
two vertices,

Fr(i, j) = −
K2

∥

∥xi − x j‖
, i 6= j. (2)

The spring-electrical model can be solved by starting from a
random layout, calculating the combined attractive and repulsive
forces on each vertex, and moving the vertices along the direction
of the force for a certain step length. This process is repeated, with
the step length decreasing every iteration, until the layout stabilizes.
This procedure can be enhanced by an adaptive step length updating
scheme [5, 19], and usually works well for small graphs.

For large graphs, this simple iterative procedure is not suffi-
cient to overcome the many local minima that often exist in the
space of all possible layouts. Instead, multilevel approach has to be
used [29]. Furthermore, nested space partitioning data structure is
needed to approximate the all-to-all electrical force [2, 25, 28] so as
to reduce the quadratic complexity to O(|V | log |V |+ |E|). Combin-
ing these two powerful techniques resulted in efficient implemen-
tations of the spring-electrical model [16, 19] that are capable of
handling graphs of millions of vertices and edges [18].

Even though the spring-electrical model has the advantage that it
can be made to work efficiently on very large graphs, it does suffer
from warping effects (also known as peripheral effects [19]), in that
vertices on the out-skirt of a drawing tend to be closer to each other,
and branches in a tree-like graph often cling to each other, see, e.g.,
Figure 1(a) and Figure 6(b). This is particularly pronounced for
graphs with a large diameter, and can degrade the clarity of their
drawing, particularly the local details. This effect was illustrated in
[19] with a simple line graph of 100 vertices: when laid out using
a spring-electrical algorithm, the edges at the center are longer than
edges at the two ends, with the ratio between the longest and the
shortest edges equals 2.72:1.

Little recorded efforts was found in the literature that attempt to
overcome the warping effect of the spring-electrical model. One
strategy [19] is to use an alternative repulsive force model,

Fr(i, j) = −
K1+p

∥

∥xi − x j‖p
, i 6= j. (3)

When p = 1, this is the same repulsive force as (2); but when p > 1,
this gives a weaker repulsive force for vertices that are far apart, yet
a stronger repulsive force for vertices that are close to each other.
Using this simple strategy, for the same line graph, it was found [19]
that the ratio between the longest and the shorted edges reduces to
1.33:1 for p = 2 and 1.06:1 for p = 3.

In practice, with a suitable choice of p, this strategy is remark-
ably effective for many graphs. The difficulty lies however in de-
ciding a suitable value of p: if p is chosen too large, the long range
repulsive force becomes too weak and parts of the graph can fold
into each other. Figure 1(a) shows the result of applying a multi-
level spring-electrical algorithm with the standard force model (2)
to the graph qh882 (|V |= 882, |E|= 1533) [7]. It is clear from the
figure that while the global structure of the graph is captured nicely,
locally, some vertices are too close to each other. For example, ver-
tices at the tip of a branch are much closer to each other than those
in the middle. The branches at the tips cling to each other, due to the
strong long range repulsive force from far away vertices. If we use
the alternative force model (3) with p = 1.8, we get a better draw-
ing (Figure 1 (b)). Now we can see the ladder like local structure
much clearer.

However, it is difficult to know in advance what the final layout
would look like for a given value of p, and too large a value can
cause long range repulsive forces to be so weak that parts of the

graph fold into each other, as seen in Figure 1 (c) when p = 4.
Furthermore, there is no control of the length of each individual
edge, what comes out of the iterative process is what we get.

The stress model does not suffer from the warping effects, be-
cause the cost function encodes the ideal spring length. However as
discussed, this model is not suitable for very large graphs. There-
fore our motivation is to devise algorithms that overcome the warp-
ing effects of the spring-electrical model, without destroying the
efficiency and good global structure that can be achieved with the
model. We accomplish this by taking advantage of the fine con-
trol of edge length offered by the stress model, while avoiding its
quadratic complexity. We propose two models in the following,
both assume that an initial layout is available. The layout reveals
global structures well, even though it suffers from the warping ef-
fect.

3 A LOCALIZED STRESS MODEL

The layout from a spring-electrical algorithm tends to reveal the
global structure of the graph very well. Therefore our first in-
tuition is that perhaps we can take the layout, and fine tune it
locally as a post processing step. One way of achieving this is
to impose an ideal edge length by minimizing a cost function

∑(i, j)∈P

(
∥

∥xi − x j‖−dij

)

2 for pairs of vertices (i, j) in a set P that

will be defined shortly. Here dij is the ideal distance between ver-
tices i and j, to be specified. We assume that spring-electrical model
has produced a globally good layout, so we want to refrain each ver-
tex i from deviating too much from its current position, xi

0. There-
fore to this cost function we can add a penalty function, which re-
sults in:

∑
(i, j)∈P

wij

(∥

∥xi − x j‖− dij

)

2 + ∑
i∈V

λi

∥

∥

∥
xi − xi

0
∥

∥

∥

2
. (4)

We denote this localized stress model (LSM). This objective of
keeping vertices close to their original position is known as an-
choring [3, 9, 23]. In the above model, λi is a penalty parame-
ter specifying the penalty we impose on vertex i for moving away
from the current position. If λi = 0 and P is the set of all pairs
{(i, j)|i 6= j, i, j ∈ V}, then the above is exactly the stress model.
However for efficiency sake we localize the model by using a much
smaller set P. A small set P, such as P = E, would be very ef-
ficient, but it only imposes a distance requirement on neighboring
vertices, therefore does not help in solving the problem of branches
clinging to each other as seen in Figure 1(a) and Figure 6(b). On
the other hand, a larger set P that includes most of the vertex pairs
results in a high computational complexity. To balance quality with
efficiency, we set P to be the vertex pairs with a graph theoretical
distance of no more than 2. This does mean that for a graph with
large 2-neighborhoods, for example a graph that contains a large
star-like structure, the model still has a high complexity.

We also need to decide what is the ideal distance dij for a pair of
vertices. There are a number of possibilities, for example, we could
set dij to be proportional to the graph theoretical distance (1 or 2).
Alternatively, we could set it to be related to the local average edge
length. After some experiments, we find that setting dij to a power
of the current distance,

dij =
∥

∥

∥
xi

0 − x j
0
∥

∥

∥

t
, t < 1 (5)

works well. this is because when ‖xi
0 − x j

0‖ is large, the power

function makes it smaller, while when ‖xi
0 − x j

0‖ is small, the
power function makes it larger, therefore overall the power func-
tion evens out the variation in the distance.

It is important to scale the above ideal distance to the proper unit,
as explained later in equation (8).

(a) (b) (c)

Figure 1: Applying a spring-electrical algorithm with different repulsive force models on qh882 with |V |= 882 and E|= 1533. (a) With the standard
force model (2). (b) With the alternative force model (3) (p = 1.8). (c) With the alternative force model (3) (p = 4).

(a) (b) (c)

Figure 2: Applying post processing algorithms to the layout of Figure 1(a). (a) LSM. (b) The Delaunay triangulation based PGM. (c) Relative
neighborhood graph based PGM.

4 A PROXIMITY GRAPH BASED MODEL

Our experience with the localized stress model LSM suggests that
it tends to work well for mesh like graphs. On the other hand, for
sparse networks with many degree-1 nodes, LSM tends to be too
conservative in expanding the layout to fill up the available white
space, due to the penalty term. If we reduce the penalty by us-
ing smaller penalty parameters λi, the final layout can deviate from
the initial layout so significantly that many of the nice features
of the initial layout are lost. The reason is that the penalty term
λi

∥

∥xi − xi
0‖2 imposes a stringent constraint on the position of the

vertex with reference to its current position. A more flexible, yet ad-
equate constraint would be to maintain the relative vertex positions.
We like to set up a “scaffolding” structure so that while vertices can
move around, their relative positions are maintained. This scaffold-
ing is constructed using a proximity graph. We note that the idea of
maintain proximity is not new, and can dates at least back to Lyons
et al. [23], where a Voronoi diagram is generated for the purpose
of node overlap removal. But the idea has not been used for the
purpose of improving the force directed algorithm. We note that in
[12, 20], a proximity stress model was used for node and edge label
overlap removal, where a sparse stress model based on Delaunay
triangulation is applied. The difference to the work here is that the
ideal edge length was calculated based on the amount of overlaps,
and the model is solved repeatedly until overlaps are removed.

A proximity graph is a graph derived from a set of points in the
space: points that are “neighbors” tend to form an edge in the prox-

imity graph. There are several ways to create a proximity graph
[21], we work with two of these:

• The Delaunay triangulation (DT): two points are neighbors
in the DT if and only if there exist a sphere passing through
these two points, and no other points lie in the interior of this
sphere.

• The relative neighborhood graph (RNG): two points xi and x j

are neighbors in RNG if and only if no point xk is both closer
to xi than x j and closer to x j than xi. RNG is a spanning
subgraph of DT.

The approach we take is to first form a proximity graph, either a
DT or a RNG. Then we merge the proximity graph with the origi-
nal graph, to form a new graph G′ = {V,E ′}, whose edges include
both original edges and edges from the proximity graph. We then
minimize a cost function

∑
(i, j)∈E ′

wij

(∥

∥xi − x j‖−dij

)

2, (6)

with dij the ideal distance between vertices i and j, defined in (5).

Notice that DT is a planar graph, therefore has no more than
3|V |−3 edges. Hence G′ has the same number of vertices, and no
more than 3|V |− 3 extra edges, compared with the original graph.

Furthermore, G′, as a spanning supergraph of DT, is rigid1, there-
fore provides a good scaffolding that constrains the relative posi-
tions of the vertices and helps to preserve the good global structure
of the spring-electrical layout. Hereafter we shall denote the prox-
imity graph based model (6) PGM.

5 NUMERICAL EVALUATION

In this section we will evaluate LSM and PGM on some graphs.
Our baseline algorithm is a multilevel spring-electrical algorithm
[19], hereafter denoted as SFDP (Scalable Force Directed Place-
ment). SFDP checks the input graph, and automatically switches
to the force model (3) with p = 1.8 if at least 30% of the nodes
are of degree 1. We use the mesh generator Triangle [26, 27] for
triangulation. All results are generated on a 64-bit Linux machine
with a Intel Xeon 3.20 GHz CPU and 8 GB of memory, using gcc
compiler version 3.4.6.

5.1 Stress majorization

Both LSM and PGM, defined in Equations (4) and (6) respectively,
have similar forms to the stress model defined by Equation (1),
therefore we solve them by applying the stress majorization tech-
nique [14], which was demonstrated to be a robust algorithm for
finding the minimum of (1). Consider the cost function of LSM:

f (x) = ∑
(i, j)∈P

wij

(
∥

∥xi − x j‖−dij

)

2 + ∑
i∈V

λi

∥

∥

∥
xi − xi

0
∥

∥

∥

2

= ∑
(i, j)∈P

(

wij‖xi − x j‖
2 −2dijwij‖xi − x j‖+wijdij

2
)

+ ∑
i∈V

λi‖xi − xi
0‖2

All the terms above are either constant, linear, or quadratic with
regard to x, except the second one. Using the Cauchy-Schwartz
inequality,

(

xi − x j

)

T
(

yi − y j

)

≤
∥

∥xi − x j

∥

∥‖yi−y j‖, we can bound
the cost function by

g(x,y)

= ∑
(i, j)∈P

(

wij‖xi − x j‖
2 −2dijwij

(

xi − x j

)

T
(

yi − y j

)

‖yi − y j‖
+wijdij

2

)

+ ∑
i∈V

λi‖xi − xi
0‖2,

with the bound tight when y = x. The idea of stress majorization

is to minimize a sequence of quadratic function g
(

x,yk
)

, with y0 =

x0 the initial layout, and subsequent yk the result of minimizing

g
(

x,yk−1
)

,k = 1,2,
The minimum of the quadratic function g(x,y) is derived by set-

ting ∂xi
g(x,y) = 0, giving

(Lw +Λ)x = Lw,d y+Λx0 (7)

where the weighted Laplacian matrix Lw has elements

(Lw)ij =

{

∑(i,l)∈P wil, i = j

−wij, i 6= j

and matrix Lw,d has elements

1Here a graph is defined as rigid, if a layout of the graph is not flexible

in 2D. A layout is flexible if there exists a non-trivial continuous deforma-

tion (rotation and translation are considered trivial deformations) from this

layout to another, such that edge lengths are preserved.

(

Lw,d

)

ij
=

{

∑(i,l)∈P wil dil

/

‖yi − yl‖ , i = j

−wij dij

/∥

∥yi − y j

∥

∥ , i 6= j

In (7), Λ is a diagonal matrix, with the i-th diagonal entry λi. There-
fore the problem of finding a minima of g(x,y) becomes that of
solving the linear system (7), with the left hand side matrix fixed
and sparse (provided that P is a small subset of all possible ver-
tex pairs). In fact when all penalty parameters λi are positive, the
matrix Lw + Λ is diagonally dominant, so an iterative procedure
such as the preconditioned conjugate gradient method [15] should
converge quickly on the linear system. We use a diagonal precondi-
tioner, and terminate the conjugate gradient algorithm if the relative
2-norm residual for (7) is less than 0.01. A tighter tolerance is not
necessary because the solution of (7) constitutes an intermediate

step of the stress majorization. The resulting solution xk is used to
substitute for the y in (7) and the linear system solved again until
∥

∥xk+1 − xk
∥

∥/|V | < ε . We used ε = 0.001.
The proximity graph model (6) can be similarly solved using the

stress majorization procedure, except here P = E ′, and terms related
to the penalty parameters vanish.

For LSM, it is particularly important that we scale the ideal dis-
tance suitably. The scaling factor s is chosen to minimize the initial
stress f

(

x0
)

,

(

∑
(i, j)∈P

wij

(

|xi
0 − x j

0‖− sdij

)

2 +∑λi‖xi
0 − xi

0‖2

)′

s

= 0

or

s =
∑(i, j)∈P wij

∥

∥xi
0 − x j

0
∥

∥ dij

∑(i, j)∈P wijdij
2

. (8)

5.2 Numerical results

We have experimented with different values of t in the ideal dis-
tance formula dij =

∥

∥xi
0 − x j

0‖t , and found that t = 0.4 works well
for LSM. We set the penalty parameters λi = 0.05. Figure 2(a)
shows the result of LSM on graph qh882. As can be seen, LSM
improves upon the original drawing (Figure 1(a)) by revealing more
details of the graph, such as the ladder structure. At the same time,
it does not deviate from the original drawing very much.

Figure 2(b) shows the results of applying PGM, with the Delau-
nay triangulation as the proximity graph. Here we used distance
formula dij =

∥

∥xi
0 − x j

0‖0.6 (0.6 is our default setting for PGM).
Compared with Figure 2(a), this drawing utilizes more available
space. For example, the branch at the top is now expanded and can
be seen more clearly. The downside of PGM is that some branches
which were straight in the original drawing now become twisted,
such as the branch at the bottom of Figure 1(a). The reason is that
the Delaunay triangulation can create edges that link far away ver-
tices together. Figure 3(a) shows a Delaunay triangulation of the
vertices in Figure 1(a). In this Delaunay triangulation there is a
particularly long edge linking the bottom most vertex with one to
the left. In addition there are four long edges that link the bottom
branch to a vertex to the right. Since we set the ideal distance of
PGM to be the 0.6 power of the current distance, the bottom branch
is “pulled” to the left and right, which explains the kink of this
branch seen in Figure 2(b).

We also experimented with relative neighborhood graph based
PGM. Here, for computational convenience and efficiency, follow-
ing [13], we generate an approximation to the relative neighbor-
hood graph by starting from a Delaunay triangulation, and remov-
ing edges between vertices i and j if there is a vertex k adjacent to i
or j such that

∥

∥xi − x j

∥

∥> min
{

‖xi − xk‖ ,
∥

∥x j − xk

∥

∥

}

. Because we
only check neighboring vertices, the result is a superset of the true

(a) (b)

Figure 3: Proximity graphs using the layout of Figure 1(a). (a) The Delaunay triangulation. (b) Relative neighborhood graph.

relative neighborhood graph. This relative neighborhood graph for
the layout in Figure 1(a) is seen in Figure 3(b).

While the Delaunay triangulation is rigid, from Figure 3(b) we
can see that relative neighborhood graph is not rigid. If we imagine
that edges are rods and vertices are joints, the top branch of Fig-
ure 3(b) is clearly flexible and can swing to the left or right. This
non-rigidity means that realizable layout that minimizes the cost
function (4) is not unique, and is subject to deformation. We found
that for some non-rigid graphs, parts of the layout after applying
relative neighborhood graph based PGM can fold into each other.
For graph qh882, however, this proved not to be a real issue and
the resulting layout in Figure 2(c) is reasonable.

Because of the many long edges that exist in the Delaunay tri-
angulation, for mesh like graphs, DT based PGM is not suitable
as it tends to destroy the symmetry that exist in the drawing of the
spring-electrical model (Figure 4). Relative neighborhood based
PGM tends to suffer less from this problem, and together with LSM
are suitable for such graphs, as seen in Figure 5 where these two al-
gorithms are applied to the dwt 1005 graph [7].

For sparser graphs, however, the long edges in the Delaunay tri-
angulation proved very effective in pulling out branches that cling
to each other, thus utilize the empty space. Figure 6(a) shows
the result of our baseline spring-electrical algorithm SFDP on the
USA.ncol graph. This graph is a spanning tree taken from a web
crawl graph, generated by Bill Cheswick of AT&T Labs, similar to
those seen in [6]. The drawing is pleasing and highlights the tree
nature of this graph. However, there are a lot of white spaces that
are not utilized. This is a common problem for the spring-electrical
model, and is also seen in other implementations. Figure 6(b) shows
the result of applying the FM3 algorithm [16] with the default set-
tings. Here the warping effects, with the branches cling tightly to-
gether, is also obvious.

If we now apply LSM and PGM to the layout of Figure 6(a), we
get Figure 7. Clearly both LSM and PGM improve space utiliza-
tion. For such sparse graphs, it is beneficial to augment the original
edge set with the Delaunay edges, thus making the graph rigid and
enabling the stress function to preserve relative position well. Ac-
cordingly Figure 7(b), which is based on PGM, is probably superior
to Figure 7(a).

Both LSM and PGM are relatively cheap computationally. Ta-
ble 1 shows the CPU time for laying out a graph, and the post
processing time. For graphs that do not contain any large 2-
neighborhood (dwt 1005 and qh882), LSM is faster because the
penalty term makes the linear system involved in stress majoriza-

Table 1: Comparing the CPU time (in seconds) for the baseline al-
gorithm SFDP, post processing algorithms LSM and the Delaunay
triangulation based PGM, as well as the FM3 algorithm.

Graph |V| |E| SFDP LSM PGM FM3

USA.ncol 44954 44953 174 57 31 130

dwt 1005 1005 7616 1. 0.05 0.6 1.68

qh882 882 3066 0.93 0.03 0.44 1.79

tion more strongly diagonally dominant, hence conjugate gradient
algorithm converges in less iterations, and computational cost per
iteration is also small. However for the USA.ncol graph, LSM
is slower. This is because the graph contains a large star struc-
ture (seen as the dense round clump near the center of Figure 6(a)).
This makes the 2-neighborhood graph within this structure a com-
plete graph, hence even though conjugate gradient algorithm still
converges in a small number of iterations (stress majorization took
5 iterations, the average number of iterations for conjugate gradi-
ent is 7), the relatively dense matrix makes the computational cost
higher compared with PGM, whose matrix is almost as sparse as the
adjacency matrix of the original graph. For PGM, stress majoriza-
tion takes 19 iterations, and on average conjugate gradient takes
132 iterations to converge. As a benchmark, in the table we also
included the CPU time for the FM3 algorithm [16].

There are algorithms that are specifically designed to work with
tree like graphs and try to layout a graph by filling in existing white
spaces, notably LGL [1], a popular program for visualizing biologi-
cal networks. It is based on the Internet map visualization algorithm
of Cheswick et al. [6]. LGL introduces nodes in the breadth-first
spanning tree order into the layout, and uses iterations of a force di-
rected algorithm to find good position for the nodes. Figure 8 shows
the result of applying LGL to the USA.ncol graph. While LGL
fills up the space very well, it obfuscates the fact that the graph is a
tree, and there are a lot of edge crossings. It took 3288 seconds of
CPU time, an order of magnitude longer than SFDP combined with
LSM or PGM. It is not clear to us why LGL is so much slower.

Figure 4: Applying the Delaunay triangulation based PGM algorithms to graph dwt 1005 with |V | = 1005 and |E| = 3808. Left: the Delaunay
triangulation which contains many long edges. Right: the Delaunay triangulation based PGM fail to preserve the symmetry.

Figure 5: Applying post processing algorithms to graph dwt 1005 with |V | = 1005 and |E| = 3808. Left: layout by SFDP. Middle: after applying
LSM. Right: after applying relative neighborhood based PGM.

6 CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is in proposing two related al-
gorithms to overcome the warping effects of the spring-electrical
model. The algorithms can be implemented efficiently, and are
shown to produce aesthetic drawing for very large graphs not pos-
sible using any other existing algorithms known to us.

We have also explored other strategies. For example, one ap-
proach investigated is to start from a layout, and execute a few
steps of refinement by adding to the spring-electrical model a force
that attracts (repels) if the distance between two vertices are larger
(smaller) than the ideal distance. However none seems to work as
well as the two algorithms presented here.

For future work, we would like to investigate techniques that
reduce the complexity of LSM for graphs that possess large 2-
neighborhoods. We are also interested in devising an energy model
which includes both the spring-electrical model and the LSM/PGM
models, this would unify the current two-step process and enable
the model to be incorporated into a multilevel procedure. It may
also be fruitful to explore alternative force models. The LinLog
model [24] aims to force clustering of nodes in graphs of small

diameters through weakened attractive force, thus achieves the op-
posite of what we set out to do. However, warping effect may be
alleviated by the opposite of the LinLog model: using a stronger at-
tractive force. It would be interesting to compare and contract this
with the alternative repulsive force model, as described by Equation
(3).

We wish to note that laying out scale-free, real-life networks,
particularly those with “small-world” property [30], remains a chal-
lenge. The algorithms presented here are one step forward in meet-
ing that challenge.

ACKNOWLEDGEMENTS

We would like to thank Stefan Hachul and Michael Jünger for pro-
viding the FM3 code, and Alex Adai and Edward Marcotte for the
LGL code. We would like to thank Stephen North for helpful dis-
cussions, and the referees for detailed comments.

REFERENCES

[1] A. T. Ada, S. V. Date, S. Wieland, and E. M. Marcotte. LGL: creat-

ing a map of protein function with an algorithm for visualizing very

(a) (b)

Figure 6: Spring-electrical algorithms on the USA.ncol graph with |V | = 44954 and |E| = 44953. (a) Layout by SFDP. (b) Layout by FM3.

large biological networks. Journal of Molecular Biology, 340:440–

442, 1998.

[2] J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algo-

rithm. Nature, 324:446–449, 1986.

[3] U. Brandes, V. Kaab, A. Loh, D. Wagner, and T. Willhalm. Dynamic

www structures in 3d. Journal of Graph Algorithms and Applications,

4:2000, 2000.

[4] U. Brandes and C. Pich. An experimental study on distance based

graph drawing. In GD’08: Proceedings of the Symposium on Graph

Drawing, 2008 (to appear).

[5] I. Bruss and A. Frick. Fast interactive 3-D graph visualization. LNCS,

1027:99–11, 1995.

[6] B. Cheswick, B. Burch, and S. Branigan. Mapping and visualizing

the internet. In Proceeding of USENIX Annual Technical Conference,

2000.

[7] T. Davis. The university of florida sparse matrix collection.

http://www.cise.ufl.edu/research/sparse/matrices.

[8] P. Eades. A heuristic for graph drawing. Congressus Numerantium,

42:149–160, 1984.

[9] Y. Frishman and A. Tal. Online dynamic graph drawing. In proceeding

of Eurographics/IEEE VGTC Symposium on Visualization (EuroVis),

pages 75–82, 2007.

[10] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force

directed placement. Software - Practice and Experience, 21:1129–

1164, 1991.

[11] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-

dimensional algorithm for drawing large graphs. LNCS, 1984:211 –

221, 2000.

[12] E. R. Gansner and Y. F. Hu. Efficient node overlap removal using a

proximity stress model. In GD’08: Proceedings of the Symposium on

Graph Drawing, 2008 (to appear).

[13] E. R. Gansner, Y. Koren, and S. North. Topological fisheye views

for visualizing large graphs. IEEE Transactions on Visualization and

Computer Graphics, 11:457–468, 2005.

[14] E. R. Gansner, Y. Koren, and S. C. North. Graph drawing by stress

majorization. In Proc. 12th Intl. Symp. Graph Drawing (GD ’04),

volume 3383 of LNCS, pages 239–250. Springer, 2004.

[15] G. H. Golub and C. F. V. Loan. Matrix Computations (Johns Hopkins

Studies in Mathematical Sciences). The Johns Hopkins University

Press, 1996.

[16] S. Hachul and M. Jünger. Drawing large graphs with a potential field

based multilevel algorithm. In Proc. 12th Intl. Symp. Graph Drawing

(GD ’04), volume 3383 of LNCS, pages 285–295. Springer, 2004.

[17] D. Harel and Y. Koren. A fast multi-scale method for drawing large

graphs. J. Graph Algorithms and Applications, 6:179–202, 2002.

[18] Y. F. Hu. A gallery of large graphs.

http://research.att.com/∼yifanhu/GALLERY/GRAPHS.

[19] Y. F. Hu. Efficient and high quality force-directed graph drawing.

Mathematica Journal, 10:37–71, 2005.

[20] Y. F. Hu. Visualizing graphs with node and edge labels. manuscript,

2008.

[21] J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs

and their relatives. Proc. IEEE, 80:1502–1517, 1992.

[22] T. Kamada and S. Kawai. An algorithm for drawing general undi-

rected graphs. Information Processing Letters, 31:7–15, 1989.

[23] K. A. Lyons, H. Meijer, and D. Rappaport. Algorithms for cluster

busting in anchored graph drawing. J. Graph Algorithms and Appli-

cations, 2(1), 1998.

[24] A. Noack. An energy model for visual graph clustering. In Proceed-

ings of the 11th International Symposium on Graph Drawing (GD

2003), volume 2912 of LNCS, pages 425–436. Springer, 2004.

[25] A. Quigley and P. Eades. Fade: Graph drawing, clustering, and visual

abstraction. LNCS, 1984:183–196, 2000.

[26] J. R. Shewchuk. Engineering a 2D quality mesh generator and Delau-

nay triangulator. In Applied Computational Geometry: Towards Geo-

metric Engineering, volume 1148 of LNCS, pages 203–222. Springer,

1996.

[27] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh

generation. Computational Geometry: Theory and Applications,

22:21–74, 2002.

[28] D. Tunkelang. A Numerical Optimization Approach to General Graph

Drawing. PhD thesis, Carnegie Mellow University, 1999.

[29] C. Walshaw. A multilevel algorithm for force-directed graph drawing.

J. Graph Algorithms and Applications, 7:253–285, 2003.

[30] D. Watts and S. Strogate. Collective dynamics of “small-world” net-

works. Nature, 393:440–442, 1998.

(a) (b)

Figure 7: Applying post processing algorithms to the layout in Figure 6(a). (a) LSM. (b) the Delaunay triangulation based PGM.

Figure 8: Result of LGL on USA.ncol graph.

