LOAD BALANCING FOR UNSTRUCTURED MESH APPLICATIONS

Y. F. HU AND R. J. BLAKE*

Abstract. The efficient use of distributed memory parallel systems requires the load on each
processor to be well balanced. In cases where the load changes unpredictably during the compu-
tation, a dynamic load balancing strategy is needed. Load balancing problems have been studied
extensively in recent years, particularly in the context of unstructured mesh based applications.
Static load balancing can be approximated by a graph partitioning problem and many efficient algo-
rithms have been developed. Significant progress has also been made in the development of dynamic
load balancing algorithms. This paper looks at the history and the state of the art of both classes
of algorithms, with a particular emphasis on mesh based applications. However the underlying al-
gorithms, including those for graph partitioning and flow calculation, are sufficiently generic to be
applicable to other applications.
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1. Introduction. The numerical solution of partial differential equations usu-
ally involves dividing up the physical domain into small elements or volumes to form
a mesh. To solve the problem on a distributed memory parallel computer, the mesh
should be decomposed into subdomains, the number of which usually equals the num-
ber of processors, with each subdomain assigned to a unique processor.

The static load balancing problem is that of how to decompose the mesh into
subdomains so that each processor has about the same amount of computation and
so that the communication cost between processors is minimized, with the overall aim
of minimizing the runtime of the calculation.

After the grid is partitioned and the parallel solver code has been executed for
a number of iterations, the mesh may need to be refined (or coarsened) at certain
locations, based on an estimate of the discretization errors. As a consequence of
the refinement (or coarsening), some processors may have significantly more (or less)
elements than others, thus it becomes necessary to re-balance the load in order to
maintain the parallel efficiency. This is the dynamic load balancing problem.

Usually the load of each processor remains fixed for many iterations in between
mesh adaptations, and the load balancing step is only needed just after a mesh refine-
ment or coarsening. Such quasi-dynamic load balancing problems are relatively easy
to solve, although still far more difficult than the static load balancing problem.

In this paper developments over recent years and the state of the art in static
and dynamic load balancing algorithms will be reviewed. The discussion is biased
towards unstructured mesh based applications, although the techniques discussed here
may be used in many other areas where static and dynamic load balancing problems
appear, for example, task scheduling in operating systems. Section 2 introduces some
useful notation, followed by Section 3 which looks at the classical as well as recent
graph partitioning algorithms. Section 4 discusses dynamic load balancing algorithms.
The paper finishes with some future research topics in Section 5 and conclusions in
Section 6.

2. Graph Theory Notation. Much of the load balancing problem can be de-
scribed using terminology from graph theory. In fact some of these problems had
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Fi1c. 2.1. An undirected graph (left) and a directed graph (right)

already been studied in graph theory before they appeared in the context of parallel
computing.

A graph G has two key components:

e The vertex set V', which is just a list of indices;

e The edge set E. Each edge consists of two vertices.
The number of vertices and edges of a graph are denoted by |V| and |E|. The number
of edges connected to a vertex is called the degree of the vertex. The degree of the
graph is the largest degree of all of its vertices.

A graph can be directed, in which case there is a beginning and an end vertex
(also called the head and the tail, respectively) for each edge. A graph can also
be undirected. For example, Figure 2.1 illustrates an undirected graph (left) and a
directed graph (right). The undirected graph has 5 vertices, V = {1,2,3,4,5}, and 4
edges, E = {(1,2),(2,3),(2,4),(4,5)}. The number of vertices and edges are therefore
|V| =5 and |E| = 4 respectively. The directed graph also has 5 vertices and 4 edges,
although each edge has a direction associated. For instance, the edge between vertex
4 and 2 has vertex 4 as the head and vertex 2 as the tail. All graphs in this paper are
undirected, unless specified otherwise.

If two vertices ¢ and j form an edge, this will be denoted as (i,j) € E, or i > j.
A graph is connected, if for any two vertices ¢ and j, there exists a path connecting
them. Here a path is defined as a list of vertices {4,41,42,...,ik, 7} such that any two
subsequent vertices in this list form an edge.

The distance between two vertices of a graph is defined as the minimum number
of edges among all paths connecting these two vertices. For the undirected graph in
Figure 2.1, the distance between vertex 1 and vertex 5 is 3. This is different to the
physical distance between the two points in the Euclidean space.

3. The Static Load Balancing Problem. The static load balancing problem
for a mesh based application involves partitioning the mesh into subdomains. The
subdomains can then be distributed over the processors and calculation carried out in
parallel. Different partitions of the mesh may result in different times to completion
for the calculation. It is therefore necessary to examine the quality of the partitioning
based on its effect on the application code. There are a number of factors.

The first factor is that of the load balance. The computational work of each pro-
cessor should be balanced, so that no processor will be waiting for others to complete.
Assuming that the computational work per processor is proportional to the number
of mesh nodes in the subdomain, then to achieve load balance it is necessary for the
number of nodes in each subdomain to be the same.

The second factor is that of the communication cost. When forming the dis-
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cretized equations on a node of the mesh, the contributions from its nearest neighbor
nodes will usually be needed. Depending on the order of the discretization scheme,
contributions from more distant neighboring nodes may be necessary. On a parallel
computer, accumulating the contributions from nodes that are not on the current pro-
cessor will incur communication cost. It is known that on distributed memory parallel
computers the cost of accessing remote memory is far higher than that of accessing
local memory (typically a ratio of between 10 to 1000). It is therefore important to
minimize the communication cost.

There are other factors that affect the time to completion of a parallel calculation.
Often, to maximize the parallelism, the solver algorithm implemented on a parallel
computer is not chosen to be mathematically equivalent to the sequential algorithm.
Therefore the number of iterations needed for a parallel code to converge on multi-
processors may not be the same as that on a single-processor. This is particularly
true when implicit algorithms are used, and the way a mesh is partitioned can affect
the rate of convergence considerably. However for now, we will in essence assume that
a linear explicit solver is being used and seek to meet two criteria

e Each subdomain should have a roughly equal number of nodes;

e The communication cost is minimized.

It is useful to introduce the idea of a communication graph, and to distinguish
the computational mesh from its communication graph. The communication graph
characterizes the data dependency of the computation on the mesh. For instance,
when constructing a communication graph for the purpose of partitioning a finite
element mesh,

o If the finite element algorithm has a node based data structure, then compu-
tation on each node requires data from neighboring nodes (those nodes which
share an edge with this node). Therefore data dependency is along the edges
of the mesh, in which case vertices of the communication graph are simply
the nodes of the mesh, and the edges of the graph coincide with the edges of
the mesh.

e Alternatively, if the finite element algorithm has an element based data struc-
ture, then computation on each element requires data from neighboring ele-
ments (those elements which share a face with this element). Therefore the
data dependency is across the faces of the mesh. Vertices of the communica-
tion graph are now at the centroid of the elements, and two vertices of the
graph form an edge if the corresponding elements share a face. Such a graph
is called the dual graph of the mesh.

The partitioning of a mesh is usually based on the partitioning of its corresponding
communication graph. The number of edges of the communication graph cut by a
partitioning is called the number of edges-cut (or edge-cut for short) of the partitioning.
The communication cost of a subdomain is a function of its edge-cut as well as the
number of neighboring subdomains that share edges with it. In practice the edge-
cut of a partitioning is usually used as an important indicator of the quality of the
partitioning. Figure 3.1 shows a mesh of 788 elements for an element based finite
element calculation, and the dual graph of the mesh. The partitioning of the dual
graph (Figure 3.1 (right)) into 4 subdomains, using the recursive coordinate bisection
(RCB) algorithm described in Section 3.1.1, results in the partitioning of the mesh
shown in Figure 3.1 (left).

When there are only two subdomains or processors, the graph partitioning prob-
lem becomes a graph bisection problem, where given a graph G = (V, E) with vertices
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F1g. 3.1. A mesh of 788 elements (left), and its dual graph with 788 vertices (right)

V and edges E, it is required to find a partition V = V; |J V such that Vi (V2 = 0,
|[Vi] ~ V2| and the edge-cut |E.|:

|Ec| = |{h | he E;h= (1}1 1)2); v1 € Vi, vg € ‘/2}|

is minimized. Here for a set S, one denotes |S| as the number of elements in the set.

The graph bisection problem has been studied in the past by many authors (see,
e.g., [53, 63, 11]) in the context of graph theory as well as VLSI circuit layout. Ad-
vances in parallel computing hardware and software has renewed interest in the prob-
lem. The graph bisection problem is an NP hard problem, so there are no known
algorithms that can find the exact solution to the problem in polynomial time. Most
of the graph bisection methods therefore seek a good approximation to the optimal
partitioning that can be calculated efficiently.

In the following a number of partitioning algorithms are described. Many of them
are bisection based. A partitioning for an arbitrary number of processors requires the
recursive use of the bisection algorithm (for a number that is not a power of two, the
bisection will give two subdomains of different sizes, see [42]). We shall denote n = |V/|
the number of vertices of the graph, and p the number of processors (subdomains).

3.1. Geometric Based Algorithms. Since in practice all meshes are within
a physical domain and have some coordinates associated with them, it is intuitive
to classify the nodes based on their physical orientation. The shortcomings of this
approach are obvious. Among others, the result of such a partitioning is not invariant
to geometric transformation of the mesh, such as a perturbation of the mesh nodes.

3.1.1. Coordinate bisection. The recursive coordinate bisection (RCB) algo-
rithm [87] partitions the graph according to the coordinates of the vertices. For this
purpose the coordinate of a vertex of the communication graph is taken as that of its
corresponding node of the mesh, or that of the centroid of the corresponding element
in the case of a dual graph. The RCB algorithm divides the graph into two halves
according to the z-coordinates of the vertices, then further into four according to the
y-coordinates, etc.. This works well when the mesh is evenly spread over a simple
domain. Otherwise it can create long boundaries with disconnected subdomains. This
situation can be alleviated by the so called unbalanced recursive bisection approach
[46], where instead of dividing the vertices into equal sets, one chooses the partition-
ing that minimizes the aspect ratio and divides the graph into subgraphs of nk/p
and n(p — k)/p vertices respectively. Here n is the number of vertices in the graph,
p the number of processors and k € {1,2,...,p — 1}. By suitable choice of k at each
bisection, this approach leads to subdomains of equal number of vertices but with
better aspect ratios.
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Fi1G. 3.2. Partitioning a mesh into 16 subdomains using RCB

Figure 3.2 shows the result of applying the RCB to the dual graph of a mesh with
788 elements. It creates 142 inter-boundary edges.

3.1.2. Inertia bisection. Partitioning using coordinate bisection is susceptible
to the orientation of the mesh, a simple rotation of the mesh would result in different
partition. Inertia bisection [54] remedies this by using a procedure that is invariant to
rotation. It finds the principal axis of the communication graph. Here the coordinates
of the vertices of the communication graph are defined as explained in Section 3.1.1.
If one assumes that each vertex has a unit mass associated with it, then the principal
axis is the axis that minimizes the angular momentum when the graph rotates around
it.

Consider a graph of n vertices associated with a 3D mesh. Let the principal axis
be yo + a * y with yo a point in space, a real numbers and y a unit vector. Then any
vertex ¢ with coordinates z; € R? has an angular momentum equal to the square of
its distance to the axis, or

(zi —y0)Ty
2 — yol|* — ———— = llzi — wol* — (z: — %o

T
Tl )

y, t=1,...,n

The principal axis minimizes the sum of these momentums:

n

> (llzi = yol” = (i — yo)y)

i=1

subject to ||y||? = 1. It is possible to prove, using the necessary condition of con-
strained optimization, that yo = & = %E?:l z; and that y is the eigenvector that
corresponds to the largest eigenvalue of the 3 x 3 matrix

(3.1) 1= (z;i—3)(xi —2)"

Once this eigenvector has been found, every vertex can be sorted based on its
projection onto the principal axis, that is, the value (z; — z)Ty, or simply z7 y.

The main computational cost of the inertia algorithm is the formation of the
inertia matrix (3.1), which requires of the order of O(n) operations. The algorithm is
easy to parallelize [18, 74].
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Fi1G. 3.3. Partitioning a mesh into 16 subdomains using RGB

3.2. Graph Theory Based Algorithms. One of the reasons for the relatively
low quality of geometric based algorithms is that they make no use of any connectivity
information about the graph.

3.2.1. Graph bisection. The recursive graph bisection (RGB) algorithm [87]
attempts to remedy this. Assume that the graph is connected. The RGB algorithm
first finds the two vertices that are the furthest apart (their distance is called the
diameter of the graph). Then, starting from one of them (the root), the half of the
vertices that are closer to the root form one subdomain, the rest form the other. This
process is then recursively executed on each of the subdomains.

To find the two vertices that are the furthest apart, a heuristic procedure can be
employed. Starting from any vertex as the potential root R, label its neighbors with
1, and the neighbors’ neighbors as 2, and so on. The last labeled vertex has a label of
m which is its distance from R. Assign this vertex as R and repeat the process. When
the distance m does not increase any more, R is taken as the root and m the diameter
of the graph. In practice this procedure converges quickly in a few iterations.

The graph bisection algorithm has a complexity of O(n). Figure 3.3 shows the
result of applying the RGB algorithm to the dual graph of the mesh of 788 elements,
resulting in 142 shared edges, the same as RCB by coincidence.

3.2.2. Greedy algorithm. Starting with a vertex with the smallest degree,
mark its neighbors, and then the neighbors’ neighbors. The first n/p marked vertices
are taken to form one subdomain and the procedure is applied to the remaining
graph until all of the vertices are marked. This algorithm [20] is similar to the RGB
algorithm, although it is not a bisection algorithm. Like RGB it has a low complexity
of O(n).

3.2.3. Spectral bisection. The recursive spectral bisection (RSB) algorithm
[68, 75, 87] is based on the following consideration. Let each vertex of the graph be
assigned a value of either 1 or —1, and let the value assigned to vertex ¢ be denoted by
x;. This creates a bisection of the graph in which the vertices having value 1 form one
subdomain and those with value —1 form the other. The edge-cut for the bisection
can be expressed as

(5.2 Bl=1 X @i-a)

ij, i,jEV
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where ¢ < j means that there is an edge connecting the vertices ¢ and j. In order
to keep the load balanced, each of the two subdomains is required to have the same
number of vertices. Thus the sum of all the values associated with the vertices is zero,
that is

i=1

The graph bisection problem is equivalent to minimizing (3.2) subject to (3.3)
with z; taking the value of either 1 or —1. This is an integer programming problem
which is difficult to solve when the number of vertices n is large. Ignoring the integer
constraints, the quadratic (3.2) can be minimized subject to the linear constraint (3.3)
only. This gives a continuous minimization problem. But without an extra constraint
the solution is simply the vector of zeros. Remembering that when all the variables
take the value 1 or —1, the sum of the squares should be n, the number of vertices.
This gives the extra constraint

n

(3.4) Za:zz =n.

i=1
The quadratic (3.2) can now be minimized subject to (3.3) and (3.4).
The quadratic (3.2) can be written as

1
(3.5) |E,| = ZxTLx,

where = (z;) is the vector composed of all the values to be assigned to vertices and
L is an n x n matrix known as the Laplacian matrix of the graph. It has the simple
form

-1, if i#jandi < j,
(3.6) (L)ij = < deg(i), if i=y,
0, otherwise.

Here deg(7) is the degree of the vertex ¢, defined in Section 2 as the number of edges
connected with the vertex i. The matrix L satisfies Le = 0 with e the vector of
all ones. Applying the necessary condition for the constrained minimization problem
gives

(3.7) Lz = pe + Az,

with g and A two Lagrange multipliers to be decided. Multiplying both sides of the
equation by eT gives yu = 0. Thus z has to be an eigenvector of L and the edge-cut is
|E.| = +nX. In order to minimize the edge-cut, z needs to be the eigenvector of the
smallest possible eigenvalue of L that satisfies the two constraints (3.3) and (3.4).
The matrix L is positive semi-definite with smallest eigenvalue A; = 0 and corre-
sponding eigenvector e. Clearly e is not a solution to the problem since it does not
satisfy the load balancing constraint (3.3). If the graph is connected, then it can be
shown that the next smallest eigenvalue A, is positive [63]. The eigenvector associated
with this eigenvalue satisfies (3.3) because it is orthogonal to the first eigenvector e.
It also satisfies (3.4) by proper scaling, and thus is the solution of the constrained
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F1G. 3.4. A graph that can not be bisected into 2 connected subgraphs with an equal number of
vertices

1(-0.465) 3.0.465)

5(-0.261)

2 (-0.465) 4(0.465)

F1G. 3.5. A simple graph and its Fiedler vector

minimization problem. This eigenvector (also called the Fiedler vector) gives a value
to each vertex of the graph, and the graph can be bisected by separating those with
smaller values from those with larger values. The procedure can then be repeated on
each of the subdomains. This gives the RSB algorithm. In practice the RSB algo-
rithm almost always gives connected subdomains if the original graph is connected,
however there can be exceptions, as Figure 3.4 shows.

Figure 3.5 gives a simple graph and the eigenvector associated with the second
smallest eigenvalue of the Laplacian. Here the values of the eigenvector are marked
beside each vertex in brackets. Sorting the vertices based on the values of the eigen-
vector bisects the graph into two triangles, with the edge-cut of one.

To find the eigenvector corresponding to the second smallest eigenvalue, the Lanc-
zos algorithm can be employed. This is an iterative algorithm which requires O(n)
operations per iteration. The algorithm normally converges in m iterations, with m
typically less than a few hundred. Thus the algorithm has a complexity of O(mn).
However the Lanczos algorithm requires the storage of m Lanczos vectors of length
n, unless the entire Lanczos recurrence is run through a second time in order to accu-
mulate the eigenvector. An alternative algorithm [56] for finding the eigenvector is to
solve the minimization problem (3.2) using the conjugate gradient algorithm, which
requires the storage of only four vectors. This algorithm was only tested on regular
grids.

Figure 3.6 shows the result of applying the RSB algorithm to the dual graph of
the mesh with 788 elements, the partition has 108 shared edges, significantly fewer
than the edge-cut of 142 generated by the RCB and RGB algorithms, although the
RSB algorithm is far more expensive. In this case all of the subdomains are connected.

Two recursive spectral bisections do not necessarily generate an optimal quadri-
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FiG. 3.6. Partitioning a mesh into 16 subdomains using RSB

section [76]. Direct quadri-section, even octa-section, using two or three eigenvectors
of the Laplacian matrix has been explored [34]. Another interesting way of utilizing
multiple eigenvectors is to treat them as spectral coordinates of the vertices. Using
these coordinates in the context of inertia bisection can generate partitions of better
quality than RSB [77].

3.2.4. K-L algorithm. The K-L (Kernighnan-Lin) algorithm [53, 24, 69] was
first suggested in 1970 for bisecting graphs in relation to VLSI layout. It is an iterative
algorithm. Starting from a load balanced initial bisection, it first calculates for each
vertex the gain in the reduction of edge-cut that may result if that vertex is moved
from one partition of the graph to the other. At each inner iteration, it moves the
unlocked vertex which has the highest gain, from the partition in surplus (that is, the
partition with more vertices) to the partition in deficit. This vertex is then locked
and the gains updated. The procedure is repeated even if the highest gain may be
negative, until all of the vertices are locked. The last few moves that had negative
gains are then undone and the bisection is reverted to the one with the smallest edge-
cut so far in this iteration. This completes one outer iteration of the K-L algorithm
and the iterative procedure is restarted. Should an outer iteration fail to result in
any reductions in the edge-cut or load imbalance, the algorithm is terminated. The
initial bisection is generated randomly and for large graphs, the final result is very
dependent on the initial choice. The K-L algorithm is a local optimization algorithm,
with a limited capability for getting out of local minima by way of allowing moves
with negative gain.

By using appropriate data structures, it is possible to implement the K-L algo-
rithm so that each outer iteration has a complexity of O(|E|) [24]. Figure 3.7 shows
the best result among 3 runs of the algorithm on the mesh with 788 elements, it has
133 inter boundary edges.

The K-L algorithm is a 2-way local refinement algorithm. It is able to reduce
the edge-cut of an existing bisection and can be combined with any of the other
partitioning algorithms. It has been extended to p-way refinement (see Section 3.4).

3.3. Other Partitioning Algorithms.

3.3.1. Global optimization algorithms. Since graph partitioning is a global
optimization problem, a number of popular global optimization algorithms have been
explored. Among these are simulated annealing [87, 61, 79, 62] and genetic algorithms
(GA) [60, 59, 10]. These algorithms in their sequential form tend to take significantly
more computational time (and more memory in the case of GA) compared to other



10 Y. F. HU AND R. J. BLAKE

AV
AL
Wiy

S
Pl

iV AT

F1G. 3.7. Partitioning a mesh into 16 subdomains using K-L

partitioning algorithms. On the other hand they are easy to parallelize and they also
have the potential to give partitions of better quality. In particular, these algorithms
may be useful in fine tuning an existing partition created by a faster algorithm [79].
Besides, with these algorithms, a more complicated and accurate model, in the form
of a cost function that takes into account the effect of communication cost and load
balance, is usually used. It is noted that the K-L algorithm is also able to use more
complicated cost functions [84]. However in order to retain the efficiency advantage
of the algorithm such a cost function should be of a localized nature [84].

3.3.2. Reducing the bandwidth of the matrix. As we have seen in the
discussion of the RSB algorithm (equation (3.6)), an undirected graph can be uniquely
represented by an n X n matrix, where the entry (4,5) is nonzero if vertices i and j
are connected by an edge and zero if the two vertices are not connected. A good
bisection of the graph is equivalent to an ordering, through symmetric permutation,
of the matrix such that the resulting matrix has very few nonzero off-diagonal entries
corresponding to the two principal diagonal blocks of size § x 5. This is because the
off-diagonal entries correspond to the edges between the two subdomains. Although
such an ordering algorithm is not readily available, there are a number of algorithms
that order the matrix to minimize its bandwidth. A partitioning algorithm [58] was
suggested which orders the vertices of the graph using matrix ordering algorithms, and
partitions the graph by taking the first n/p vertices as the first subdomain, etc.. The
algorithm is inexpensive and can usually result in a smaller number of neighbors for
each processor. The edge-cut can be improved if the algorithm is used recursively as a
bisection algorithm. Nonetheless in terms of edge-cut its is not as good as algorithms
such as the RSB or the greedy algorithm [30].

3.3.3. Index based algorithms. In a way many of the partitioning algorithms
mentioned so far work by generating an ordered list of the vertices and bisect this
list into equal segments. In the case of spectral bisection for example, this ordering is
induced by the value of the Fiedler vector. There are many classic ways of mapping a
d dimensional regular grid to a one-dimensional list, such that proximate vertices in
the original grid are mapped close to each other on the one-dimensional list. These
techniques include the Hilbert space-filling curve [39] and the bit-interleaving trans-
formation [66]. An irregular grid can be so indexed by embedding the grid into a
d-dimensional regular grid. The advantage of such index based methods is that the
ordering can be calculated very quickly. Index based algorithms can also be paral-
lelized and efficiently adopted for situations where vertices are added or deleted as
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F1G. 3.8. Graph coarsening based on the independent vertex set: the original Graph G with 788
vertices (left); G1 with 332 vertices (center); Go with 94 vertices (right)

the result of mesh adaptation. The quality of the partitioning is comparable to that
of the RCB algorithm [66].

3.4. The State of the Art. Much of the recent development in the area of grid
partitioning has been in the efficient implementation and improvement of existing al-
gorithms. Three important developments are: the combination of existing algorithms;
multilevel approaches and parallel implementations of the algorithms.

3.4.1. Hybrid approach. In the hybrid approach, algorithms are combined to-
gether to achieve better results. In particular, the K-L algorithm, which is a “steepest
decent” type optimization algorithm with a limited capability for getting out of a lo-
cal minima, has been combined with other more “global” algorithms and with the
multilevel approach [42, 79, 35, 36].

3.4.2. Multilevel approach. The idea of the multilevel approach is to encapsu-
late the connectivity information of a very large graph (of, say, over 1 million vertices)
by a series of coarser and coarser graphs. An algorithm based on the multilevel ap-
proach normally has 3 phases

e coarsening phase: the original graph G is reduced into a series of successively
coarser graphs G1,Ga,...,G.

e partitioning phase: partition the coarsest graph Gy, into p parts;

e uncoarsening and refinement phase: the partitioning of G, is interpolated to
G—1 and refined, the process repeated and terminated at G.

This approach is in a way similar to the multigrid idea for grid based linear
equation solvers [9]. The multilevel approach was first introduced [1] to speedup the
recursive spectral bisection (RSB) algorithm, and was soon used in combination with
K-L type refinement algorithms [36, 47, 82].

The coarsening phase —

There are a number of ways to coarsen a graph. In [1] the maximal independent
set of a graph is chosen as the vertices of the coarse graph. An independent set of
the graph G is a set of its vertices, with no two of the vertices in the set connected
by an edge of G. An independent set is a maximal independent set if the addition of
an extra vertex makes it no longer independent. Figure 3.8 illustrates a graph of 788
vertices (which is the dual graph of the mesh in Figure 3.2), with 2 levels of coarse
graphs of 332 and 94 vertices respectively, generated using this method.

The most popular method for generating the multilevel of coarse graphs is based
on edge collapsing [36, 47]. Selected edges are collapsed so that two vertices connected
by one of these edges form a multi-node. Each vertex of the resulting coarse graph
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F1G. 3.9. Graph coarsening based on edge collapsing: the original Graph G with 788 vertices
(left); G1 with 403 vertices (center); G2 with 210 vertices (Tight)

has a weight associated with it, which indicates the number of original vertices it
contains. Fach edge of the coarse graph also has a weight associated with it that
indicates the number of original edges it represents. This edge collapsing approach
has the distinctive advantage that the edge-cut (generalized here as the sum of the
edge weights cut by the partitioning) on the coarsest graph equals the edge-cut of
the finest (original) graph, if the partitioning on the coarsest graph were inherited by
the finer graphs without further refinement. Therefore to some extent the original
problem is encapsulated well by a problem of much smaller size. Figure 3.9 illustrates
the graph of 788 vertices, with 2 levels of coarse graphs of 403 and 210 vertices
respectively, generated using this method.

The edges are usually selected using the idea of matching. A matching of a graph
is a set of edges, such that no two of them share the same vertex. The maximal
match is a matching of the largest size. In a heavy edge matching [47], vertices are
visited randomly. For each vertex, the heaviest unmatched edge from the vertex is
selected. Heavy edge matching has the advantage that the resulting coarse graph
has a relatively small total edge weight, and therefore the partitioning of it is more
likely to give a small edge-cut. As an alternative to edge collapsing based on maximal
matching, a more aggressive coarsening approach has been employed [80], where the
greedy algorithm (Section 3.2.2) was used to form small clusters of, say, 10 vertices
for collapsing. The coarsening process is applied until the graph has less than a preset
minimum number of vertices.

The partitioning phase —

As the coarsest graph is of very small size, any partitioning algorithms will be
able to partition it rapidly. The partition is executed in a manner such that the
summation of the vertex weights of each subgraph should be roughly the same. When
edge collapsing approach is used for graph coarsening, the edge-cut of the partitioning
is the same as that for the finest graph, should the partitioning be inherited all the
way to the finest graph without refinement. The choice of partitioning algorithms at
this coarsest level is not very important [47, 36] to the overall quality of the partition
because refinement will be carried out at the subsequent finer levels of the graph.

The uncoarsening and refinement phase —

During the uncoarsening and refinement phase, the partitioning of a graph Gg41
is inherited by the finer graph Gy.

For the multilevel spectral bisection (MRSB) algorithm [1], the eigenvector for the
coarse graph Gy1 is interpolated to the graph Gy as the first approximation of the
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eigenvector for G. From there, instead of using the Lanczos algorithm to recalculate
the eigenvector, Rayleigh iterations are used to improve the approximation. The
resulting positive semi-definite linear systems are solved using SYMMLQ. Because
a good initial approximation exists, the number of matrix-vector products involved
in finding the Fiedler vector using the Rayleigh quotient algorithm is normally no
more than ten, as opposed to up-to several hundred if the Lanczos algorithm is used
(here the matrix refers to the Laplacian matrix of the corresponding graph). Thus
the multilevel spectral bisection algorithm is about an order of magnitude faster than
the single level Lanczos implementation of RSB.

But there are two disadvantages to the multilevel spectral bisection approach.
First, this is still a bisection algorithm and the partitioning of a graph into many
subdomains would involve recursive use of the algorithm. Second, even though the
Rayleigh quotient procedure is substantially faster than the Lanczos algorithm, each
iteration is still of the order O(n), where n is the number of vertices in the graph (but
see [81] for a partial improvement of the situation by contracting the interior of each
of the two subdomains into super-nodes). However all that may be needed on the
finer graph Gy, is some refinement of the subdomain boundary to reduce edge-cut and
to maintain the load balance. For a large graph with a good existing partition, the
size of the boundary should be only a small fraction of that of the interior. Therefore
multilevel algorithms that adopt K-L type algorithms during the uncoarsening and
refinement phase have proved themselves to be superior to MRSB [36, 82, 47]. The
boundary refinement approach is not restricted to bisection and p-way refinement to
the existing partition could be used. In [36] vertices of any subdomain are allowed to
move to any of the other p — 1 subdomains, while in [52, 82] boundary vertices are
allowed to move to the neighboring subdomains only.

3.4.3. Parallel partitioning algorithms. Although the multilevel approach
reduces the computing time significantly, for a very large mesh it can prove to be
memory intensive — often exceeding the limits of single CPU memories. Furthermore
as the ultimate purpose of partitioning is for the subsequent implementation of the
application code on parallel machines, it makes sense to have a parallel partitioning
code. Besides, a fast parallel partitioning algorithm can also be used for the purpose
of dynamic load balancing. There have been a number of efforts in this area.

Parallel multilevel recursive bisection algorithm PMRSB —

In [2, 3], the multilevel spectral bisection was parallelized specifically for the
Cray T3D architecture using the Cray SHMEM facility. The linear algebra algo-
rithms (Lanczos, Rayleigh iteration and SYMMLQ) involved are easy to parallelize.
Difficulties arose in the parallel graph coarsening, in particular, in the parallel gen-
eration of the maximal independent set. These were tackled by using a number of
parallel graph theory algorithms from the literature. On a 256 processor Cray T3D,
the resulting algorithm PMRSB is able to partition a graph of 1/4 million vertices
into 256 subdomains, 140 times faster than a workstation (of similar specification to
one processor of the Cray T3D) using an equivalent serial algorithm.

Parallel multilevel p-way partitioner ParMETIS —

In [49], a parallel multilevel p-way partitioning scheme was developed. This is
based on work in the sequential p-way partitioning algorithm METIS [52], but with
some interesting modification to facilitate parallelization. In particular, as in PMRSB
[2, 3], a parallel algorithm due to Luby [57] for finding the maximal independent set
was employed. However unlike MRSB, where the maximal independent set is used



14 Y. F.HU AND R. J. BLAKE

=

—
A |

N
.J
:

(a)

e [N |

—
=
[}

F1G. 3.10. a) a graph partitioned into 2 subdomains, with subdomain 1 on the left and subdo-
main 2 on the right; b) after a naive K-L refinement

directly to form the coarse graph, here the maximal independent set is used for a
different purpose. By considering one independent set at one time, it is possible to
avoid conflicts during the coarsening stage when the vertices are matched, as well
as during the uncoarsening stage when the boundaries are refined. To illustrate this
consider the graph of Figure 3.10 (a) distributed across two processors. Suppose one
hopes to refine the partition to reduce the edge-cut using K-L type algorithms. To
do this in parallel without proper scheduling, processor one finds all the vertices that
have a positive gain if moved to processor two (those marked with a star), and sends
them to processor two; likewise processor two sends all the vertices marked with a
circle to processor one. This results in the graph shown in Figure 3.10 (b) which has
the same edge-cut of 13. Any subsequent use of the K-L algorithm in parallel would
result in an oscillation between these two graphs. This situation is a result of the fact
that moving vertices marked with a star to processor two affects the gains of those
marked with a circle, therefore the moves should not be carried out in isolation. One
way of avoiding this conflict is for the two processors to communicate with each other
and to collaborate on a migration strategy. When there are more than two processors,
this may necessitate a coloring of the processor graphs so that processors are grouped
in pairs and refinement is carried out on boundaries of the paired processors [18].

An alternative coloring strategy is however used in [49], as it is believed that
pairing the processors lacks the global view of the sequential p-way partitioning where
each vertex is free to move to the subdomain that leads to the maximum reduction
in the edge-cut.

The new strategy is based on coloring the vertices in a number of colors. Vertices
of the same color form an independent set. Each colored vertex set is considered
one at a time when doing the refinement. By the definition of an independent set
(Section 3.4.2), no two vertices in the set are linked by an edge, therefore moving a
vertex in this colored independent set to another processor does not affect the gain
of other vertices of the same color. Consequently, each processor may decide to send
vertices which it identifies as having a positive gain, without the need to communicate
with other processors, knowing that such a gain will be realized. This procedure can
be repeated on vertices of each color in turn. Using this strategy Figure 3.11 (a)
is colored using two symbols (either with or without a A). When applying K-L
refinement on vertices colored with A, Figure 3.11 (a) becomes Figure 3.11 (b), which
has a smaller edge-cut of 7, instead of the original edge-cut of 13.

The resulting parallel algorithm was implemented on a Cray T3D using its SHMEM
communication facility [49]. Table 3.1 [49] gives a rough idea of the capability of the
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Fi1c. 3.11. a) a graph partitioned into 2 subdomains, vertez colored; b) K-L refinement of
vertices colored with A

TABLE 3.1
Edge-cut and time for ParMETIS and PMRSB on a Cray T3D.

598a MDUAL
16 PEs 128 PEs 16 PEs 128 PEs
edgecuts |time |edgecuts | time |edgecuts |time |edgecuts | time
PMRSB | 37583 |67.45 | 103928 |22.478 | 37235 |65.49 | 54692 |18.971
ParMETIS | 31211 |2.436 | 90724 |0.805 | 13144 |(2.637 | 35457 |0.795

algorithm and its performance in relation to PMRSB [3]. The two algorithms were
applied on two meshes, 598a (a 3D finite element mesh of 144649 nodes and 1074393
edges) and MDUAL (the dual graph of a 3D finite element mesh, with 258569 ver-
tices and 523132 edges). ParMETIS is significantly faster and gives smaller edge-cut.
The scalability of both approaches is similar with approximately three to four fold
improvement in performance as the number of processor elements (PEs) is increased
by a factor of eight.

A coarse grained modification suitable for MPI implementation was introduced
more recently [50]. In this version, the vertex coloring is not used to avoid the need
for global point to point communication when each color is considered during the
coarsening and refinement phase. Graph folding to part of the parallel processors
is also carried at coarse levels to reduce the communication. During the coarsening
stage, each processor examines its vertices, and chooses their heavy edge neighbors for
matching. A match request of vertex u with a local neighbor v is granted immediately
while a request for match with a remote neighbor v is sent to the remote processor
for consideration only if 4 < v. During the refinement phase, conflict is avoided by
allowing flow in one direction at a time. That is, a vertex u belongs to partition 4
is considered for moving to partition j only if i < j (or ¢ > j at the next round).
Applying this strategy to Figure 3.11 (a), assuming that the flow is from the right to
the left, results in Figure 3.11 (b). Using MPI, this version of the ParMetis algorithm
was demonstrated [50] to lead to much better performance than that based on vertex
coloring.
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Parallel multilevel p-way partitioner JOSTLE-MD —

The parallel partitioning algorithm in [83] used a different refinement strategy to
that of vertex coloring. As this algorithm is designed also for dynamic load balancing,
the initial partitioning is assumed to be unbalanced. For any two neighboring sub-
domains p and ¢, the flow (the amount of load to be migrated to achieve global load
balance) is first calculated. The flow from p to g is denoted as fpq. Let gpq denote the
total weight of the vertices on the boundary of p which have a preference to migrate
to ¢. Let d = max(gpq — fpg + 9gp — f4p,0), which represents the total weight of all
boundary vertices with a positive gain after the flow is satisfied. Then the load to be
migrated from p to ¢ is given by

(3.8 Gpq = fpq +d/2.

This allows the flow to be satisfied and at the same time an additional load of equal
amount is exchanged between the two processors to optimize the edge-cut.

Having decided on the amount of load to be migrated, the idea of relative gain
is then used to work out which vertices are to be migrated. The relative gain of a
vertex v on processor p is defined as g(v, q) — EUEFq(U) 9(u,p)/|Tq(v)|, where g(v,q)
denotes the gain of moving v to processor ¢, and I'j(v) those vertices in processor
g that are connected with v. The vertices on the boundaries are sorted by their
relative gain and a weight of ap, is migrated. This avoids the collisions that arise
when the gain of vertices varies. But in a situation when each boundary vertex has
exactly the same gain, a tie break strategy is necessary. This was not detailed in [83].
The algorithm has been shown to be very efficient in partitioning and re-balancing
the meshes resulting from adaptive refinement. The parallel JOSTLE algorithm has
been compared with ParMETIS. It was found to give partitioning of better quality,
although it runs slower than ParMETIS [85].

Other parallel graph partitioning algorithms —

In [18] a parallel single level algorithm, combining inertia bisection with K-L re-
finement, was implemented. Possible conflict during the refinement stage was avoided
by the pairing of processors based on the edge-coloring of the processor graph. The
quality of the partition was not as good as multilevel algorithms.

In [77] a spectral inertia bisection algorithm was introduced. The spectral basis
set of eigenvectors for the coarsest graph was first calculated and serves as the spec-
tral coordinates of the vertices. The graph was partitioned with the inertia bisection
algorithm (Section 3.1.2), based on these spectral coordinates. Part of the algorithm
was parallelized. This algorithm is also suitable for dynamic load balancing, on ap-
plications where the mesh is enriched by refining the individual elements. In such a
case the refinement can be captured by updating the vertex weights of the dual graph
of the mesh, without changing the graph itself. The mesh is repartitioned quickly
after refinement, using the spectral information originally calculated for the top level
coarse mesh. Since the size of the dual graph does not change, the repartitioning time
does not change with the increase of the mesh size, as the refinement steps are carried
out. However a possible disadvantage of this approach is that in order to reuse the
spectral information, only the vertex weights, not the edge weights, are allowed to be
updated. Thus the edge-cut may not be a good representation of the actual edge-cut
of the mesh after many levels of refinement.

3.5. Existing Partitioning Softwares. In choosing a partitioning algorithm,
it is necessary to balance the benefit of the reduction in communication cost, against
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that of the cost of generating the partitioning. If the parallel computer has slow
communication, or the application is fine-grained where there is no large chunk of
computation to “shield” the cost of communication, it is very important to have a
partition of good quality. On the other hand, if the parallel computer has very fast
communication, or the application is coarse grained where there is a lot of computation
in between communication, a big reduction of the communication cost will only result
in a fractional reduction of the overall cost, and in such a case a simple and cheap
partitioning algorithm, such as the greedy algorithm, is quite adequate. Some of the
most recent parallel partitioning codes [49, 83] give very good quality partitions. They
are scalable in memory and yet are comparable in cost to the very simple algorithms
such as the greedy algorithm.
A number of packages are publicly available. Many of them are constantly being
updated. Further details should be checked from the contact addresses listed.
e CHACO (http://www.cs.sandia.gov/CRF /chac.html)
perhaps the first publicly available package. The latest version CHACO 2.0
uses multilevel combined with a number of available methods such as K-L
refinement, spectral bisection. Available by request.
e JOSTLE (http://www.gre.ac.uk/jostle/)
multilevel graph partitioning using p-way refinement. Both the sequential
and parallel version are available free for academic use as an executable, after
signing an agreement.
e METIS (http://www.cs.umn.edu/~karypis/metis/metis.html)
multilevel graph partitioning using p-way refinement. Both the sequential
and the parallel version are available free for down-load.
e PARTY (http://www.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/
PART /party.html)
sits on top of existing packages, offers greedy, multilevel spectral bisection,
coordinate bisection, inertia bisection and other algorithms. Version 1.1 is
available after signing a license.
e PMRSB (stb@renaissance.cray.com)
parallel multilevel spectral bisection. Available only on CRAY platforms.
e SSHARP [77] (http://www.cs.ngit.edu/sohn/sharp/)
multilevel graph partitioning using multiple eigenvectors and (spectral) iner-
tia bisection on the coarsest level.
¢ SCOTCH (http://www.labri.u-bordeauz.fr/Equipe /A LiENor/membre/
pelegrin/scotch/)
multilevel implementation of a number of algorithms including K-L. The code
is free for down-load for academic use.
e TOP/DOMDEC [21] (charbel@boulder.colorado.edu)
Greedy algorithm, recursive coordinate and graph bisection, recursive inertia
bisection, multilevel spectral bisection algorithm with tabu search, simulated
annealing and stochastic evolution as smoothers.
¢ WGPP [31, 32]
multilevel graph partitioning. Similar to METIS with some new features.

4. Dynamic Load Balancing Algorithms. When adaptive algorithms are
used, after an interval of computation, the mesh may be refined (or coarsened) at some
locations, usually based on an estimate of the discretization error. The refinement
(or coarsening) process can generate widely varying numbers of mesh nodes on the
processors. Subsequently, there is a need for dynamic load balancing. Load imbalance
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Fic. 4.1. (a) A mesh of “A” shape partitioned into 8 subdomains; (b) the mesh refined at
subdomain 1

may also be caused by the use of local time stepping, local spatial approximation
schemes of varying orders [26], or non-linear material properties.

As a simple example, Figure 4.1 (a) shows a mesh of shape “A”, partitioned into
8 subdomains. It has been refined in Figure 4.1 (b). Due to the mesh refinement
subdomain 1 has more nodes than the other subdomains.

In general dynamic load balancing algorithms should satisfy the following objec-
tives

e Re-balance the load of each processor with speed and scalability.
e Minimize the edge-cut (or more precisely, the communication cost of the
application after the re-balance)
In order to satisfy the first objective, the dynamic load balancing algorithm should not
only identify what to migrate efficiently, the amount of data required to be migrated
should also be kept to a minimum. Various metrics such as TotalV and MaxV [70]
have been used to model and minimize the data migration cost.

One way to re-balance the load is to repartition the mesh using one of the par-
titioning algorithms of Section 3. Indeed parallel algorithms such as JOSTLE or
ParMETIS are able to partition large mesh very rapidly [83, 70]. For example,
ParMETIS was able to partition a mesh of the order of 1 million nodes in less than
2 seconds on 128 PEs of a Cray T3D [70]. However it is important, but difficult, to
ensure that the new partitioning will be “close” to the original partitioning. Should
the new partitioning deviate considerably from the old one then the cost of transfer-
ring large amounts of data will be incurred. It has been found that repartitioning is
more appropriate when there has been a substantial localized refinement on the mesh
[72, 5].

An alternative strategy is to migrate the excessive nodes to neighboring proces-
sors, effectively shifting the boundaries to achieve a balanced load. This approach may
potentially cause less movement of data than repartitioning, although the edge-cut
after the migration could possibly be larger than that given by a global repartition-
ing. Therefore care must be taken to keep edge-cut down when choosing the nodes
to be migrated. It has been found [72] that this strategy is more suitable when the
load imbalances caused by the refinement are low, or when localized high imbalances
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occur throughout the mesh. This is because in such cases the optimal partition will
be relatively close to the initial partition.

4.1. Dynamic Load Balancing by Repartitioning. Dynamic load balancing
through repartitioning is relatively straightforward. Any of the fast parallel graph
partitioning algorithms of Section 3 may be employed. These include the parallel
multilevel schemes. Algorithms that allow quick reordering of a refined or coarsened
mesh through a slight shift of the original ordering, such as the index based algorithms
of Section 3.3.3, can also be attractive due to their simplicity and data locality. For
adaptive mesh based applications where the relationship between the “parents” and
“offspring” elements is known, the octree partitioning approach [25, 26] offers an
efficient way of repartitioning. The tree representation (the octree) is used to form
a one-dimensional list of elements, through a depth-first search. This list can be
divided, in parallel, into segments to give nearly equal load. Members of the same
segment tend to be spatially close to each other (because they are likely to have
the same parent or parents close to each other), and thus form a good partition.
This partition can be further smoothed [25] by migrating boundary elements based
on a K-L like gain calculation. Incidentally a similar idea was used in the parallel
generation of partitioned unstructured meshes [40], where a coarse background mesh
was partitioned.

Standard graph partitioning algorithms however only have edge-cut as the sole
objective. To minimize the data movement resulting from the repartitioning, a number
of techniques have been used to modify the graph partitioning algorithms, so that the
new partition is as close to an existing partitioning as possible. The idea of a virtual
vertex was used in [81, 19, 37]. A virtual vertex is associated with each subdomain and
is connected to each vertex in the subdomain by a virtual edge. The weight of this edge
reflects the communication cost of migrating the vertex. By partitioning the combined
graph, the dual objectives of minimizing edge-cut and data movement are considered
at the same time. In [73], the idea of local matching was used where matchings
were restricted to vertices that have the same home processor. This strategy biases
the multilevel graph partitioner towards an existing partitioning, thus reducing data
movement resulting from the repartitioning.

A re-mapping algorithm can be applied after the repartitioning to allocate the
subdomains to the most appropriate processors, in order to reduce the data movement
[5, 65, 72].

4.2. Dynamic Load Balancing Through Node Migration. The strategy
of migrating boundary nodes to achieve load balancing is more complicated and is
therefore discussed in detail in the following.

The process of migrating loads between processors to achieve load balance can be
broken down into two distinctive steps [81, 82, 83]:

e Flow calculation:  Each processor works out a schedule for the amount of
load that should be sent to (or received from) its neighboring processors. This
is referred to as a flow calculation in [83].

e Node selection: Once the flow is worked out, each processor decides which
mesh nodes should be sent or received, to satisfy the flow as well as to mini-
mize the edge-cut.

For real applications, there is also the third step to carry out the actual migration
of the meshes and fields. This step is very complex and the exact details depend on
the applications and the data structures used. In many adaptive computations, the
amount of data associated with each mesh node may be quite large. The time for
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F1G. 4.2. processor graph associated with the partitioned mesh in Figure 4.1 (b), and the load
(in brackets) on each processor

the migration of the data, and subsequent book-keeping cost of updating the data
structures, can dominate overall run time, specially if there is a need to re-balance
the load frequently. So far there exist few large scale applications that have a full
dynamic load balancing capability (but see, e.g., [26]). We shall therefore concentrate
on each of these first two steps, which are less application dependent.

4.3. Flow Calculation. The problem can be formally stated as follows:

Definition Given a graph G = (V, E), let each vertex ¢ € V have a load [; associated
with it. The flow calculation problem is to find the amount of migrating load J. along
each edge e € E, such that after the migration, the load on each vertex is the same.
That is

(4.1) i+ 8i=1, ieV.

jet

Here [ is the average load over all vertices, defined as [ = () ;¢ 1i)/|V], and &j; is
the amount of load to be migrated from node j to node . O

The graph here is the so called processor graph of the partitioning. Each vertex
of the processor graph corresponds to a subdomain (or a processor) and two vertices
are linked by an edge if the two subdomains share a boundary. Figure 4.2 shows the
processor graph corresponding to the partitioning in Figure 4.1 (b). The load /; can
simply be taken as the number of nodes in the subdomain i. Figure 4.2 shows that
subdomain 1 has a load of 25 nodes, whilst others have 15 nodes each. In the following
the terms vertex and processor are used interchangeably.

It is noted that the flow calculation problem does not have a unique answer. This
is because the solutions are given by a linear system (4.1), with d;; as the unknown.
There are |V| equations (out of these, |V| — 1 are independent), and |E| unknowns.
As there are usually more edges than vertices in a graph (that is, |E| > |V]), there
are usually more unknowns than equations and so the answer to the problem is not
unique.

This flow calculation problem has been studied by many authors [4, 6, 14, 28, 43,
44, 41, 78, 88, 89]. Apart from parallel unstructured mesh based applications, it has
appeared in areas such as parallel molecular dynamic simulation [7, 55]. Some of the
algorithms are discussed in the following.
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4.3.1. Diffusion algorithm. One of the most popular approaches to the flow
calculation problem is to use diffusion based algorithms [6, 14]. In a heat diffusion
process, the initial uneven temperature distribution in space causes the movement of
heat, and the system eventually reaches a steady-state temperature.

The diffusion algorithm, as described in [6], is given as follows. At each iteration
k + 1 of the algorithm, processor i will send an amount proportional to the difference
between its load and its neighbor’s load, c,-j(lz(k) - lj(-k)), to its neighbor j. Assume

l§k+1)

cij = ¢ji, the new load of the processor i is given by the combination of its own

load lgk) and contributions from/to its neighboring vertices, namely

(4.2) D = = NP - 1), i eV k=12,
]

(0

Initially the load for vertex ¢ € V is I;”’ = l;. In matrix form, the above equation can

be rewritten as
(4.3) 1+ = (1 — AW AT) 1%,

where W is a diagonal matrix of the size |E| x |E|, that consists of the coefficients
¢ij, and A is a matrix of size |E| x |V, to be defined in Section 4.3.4. For the choice
of the coefficients, Boillat [6] suggested

1

i = - - , 173, i, j€eV.
U7 max{deg(i),deg(j)} +1° 'V "

The diffusion algorithm, being a stationary iterative method of the form (4.3),
can converge quite slowly on graphs with small connectivity. Boillat [6] proved that
the worst case happens when the graph is, say, a line, and in such a case the number
of iterations needed to reach a given tolerance is O(p?), with p the number of vertices.
There are other variations of the diffusion algorithm (see [33, 28]). For example
instead of (4.3), a special case of the following equation,

(I + AW AT) 1+ = (k)

is solved in [33]. The convergence of the diffusion algorithm can also be improved
using the Chebyshev polynomial [44, 17, 64].

Many investigations of dynamic load balancing algorithms have used a diffusive
approach, although the details vary. For example, in both the tiling algorithm and
the iterative tree balancing algorithm [13, 25, 26], a processor selects amongst its
neighbors the one with the highest load and posts a request. In the tiling algorithm
the amount of load to be sent is decided by looking at the average of the loads in the
neighborhood. In the iterative tree balancing algorithm the requests are viewed as
a forest of trees. The flow along the branches of the tree is then calculated using a
logarithmic time parallel scan operation.

4.3.2. Dimension exchange algorithm. Cybenko [14] suggested a dimension
exchange algorithm, in which the edges of the graph are colored so that no two edges
of the same color share a vertex. Pairs of processors having the same color were
grouped and a processor pair (¢, j) with load I; and I; exchange their load, after
which each has the load (I; +;)/2. The algorithm was proved to converge in d steps
if the graph considered was a hypercube with dimension d. Xu and Lau [88, 89]
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extended the dimension exchange algorithm so that after the exchange processor i
has load I; x a + I; * (1 — a). If a = 0.5 this is equivalent to Cybenko’s algorithm.
Based on an eigenvalue analysis of the underlining iterative matrices, they argued
that for some graph a factor a other than 0.5 gives better convergence. On a graph
with small connectivity, this algorithm suffers in convergence in the same way as the
diffusion algorithm.

4.3.3. Multilevel algorithm. To speedup the diffusion algorithm, Horton [41]
suggested a multilevel diffusion method. The processor graph was bisected and the
load imbalance between the two subgraphs was determined and transferred. This
process was repeated recursively until the subgraphs could not be bisected any more.
The advantage of the algorithm is that it is guaranteed to converge in log(p) bisec-
tions, and the final load will be almost exactly balanced even if the loads are integers.
However, because it is not always possible to bisect a connected graph into two con-
nected subgraphs, it was not clear from the paper how to proceed for such a case.
Connectivity can of course be restored by adding new edges to a disconnected sub-
graph. However this is equivalent to moving data between non-neighboring processors
and should be avoided.

4.3.4. The method of potential. As mentioned before, the solution of the
system of linear equations (4.1) is not unique. The motivation of the algorithm [43],
called the method of potentials here for reasons explained later, is to choose amongst
these solutions one that minimizes the data movement. For this section (Section 4.3.4),
the processor graph is assumed to be directed, with the direction of each edge going
from the vertex with higher index to the one with lower index.

Let A be the matrix associated with the linear system (4.1), let z be the vector of
di;’s and b the right hand side of (4.1). Assuming that the Euclidean norm of the data
movement is used as a measure of data movement, and that the unit communication
cost, between any two processors i and j is 1/(c;;)'/?. Let W denote the diagonal
matrix of size |E| x |E| consisting of the ¢;;, then one needs to find a solution z which
solves the following minimization problem:

1
Minimise §mTW’1a;,
(4.4) subject to Az =b.

Here A is the |V| x |E| matrix associated with system (4.1). It is called the
vertex-edge incident matrix [68, 8] of the directed processor graph, given by

1, if vertex i is the head of edge k,
(A =< -1, if vertex ¢ is the tail of edge k,
0, otherwise.

Applying the necessary condition for the constrained optimization problem (see
[27]), after some algebraic manipulation, one has

(4.5) z=WATd,
where d is the vector of Lagrange multipliers given by the equation

(4.6) Ld=b
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with L = AW AT.

Thus the problem of finding an optimal load balancing schedule is transformed
to that of solving the linear equation (4.6). Once the Lagrange multipliers are found,
then the load transfer vector is x = WA”d.

For any graph, each row k of the matrix A7 only has two non-zeros, 1 and —1,
corresponding to the head and tail vertices of the edge k. Therefore the amount of
load to be transferred from processor ¢ to processor j (assuming i is the head and j
the tail), along the edge e = (3, ), is simply

dij = cij(di — dj),

where d; and d; are the Lagrange multipliers associated with vertices ¢ and j re-
spectively. The quantities d; and d; can also be looked upon as the potentials at the
vertices ¢ and j and their (weighted) difference gives the flow between the two vertices.
That is why we call this method the method of potentials.

The matrix L = AW AT is a generalized form of the Laplacian matrix (3.6). For
many parallel computers the unit communication cost is roughly the same between
any two processors (W = I), in which case this matrix is the same as (3.6).

The linear system (4.6) can be solved by many standard numerical algorithms.
The conjugate gradient algorithm was used in [29] because it is simple, easy to paral-
lelize and converges quickly. For preconditioning, the diagonal of the Laplacian may
be used.

As a simple example, considering the processor graph in Figure 4.2. The load
for each processor is given in brackets. The average load is 16.25 and the largest
load imbalance is (25 — 16.25)/16.25 = 53.8%. The Laplacian system (assuming a
weighting of W = I) is now

1 =10 0 0 0 0 0 dy 25— 16.25 8.25

-1 3 0 -1 0 -1 0 0 dy 15— 16.25 ~1.25
0 0 2 -1 -1 0 0 0 ds 15— 16.25 ~1.25
0 -1 -1 2 0 0 0 0 dy | | 15-1625 | | -1.25
0 0 -1 0 2 -1 0 0 ds | ~ | 15-16.25 [ ~ | -1.25
0 -1 0 0 -1 4 -1 -1||ds 15— 16.25 -1.25
0 0 0 0 0 -1 2 -1]/|d 15— 16.25 -1.25
0 0 0 0 0 -1 -1 2 dg 15— 16.25 -1.25

The solution of this linear equation is
(di,...,ds) = (11.28,2.53, —2.22, —0.47, —2.72, —1.97, —3.22, —3.22).

These Lagrange multipliers (the potentials) are illustrated in Figure 4.3 in brackets.
The amount of load to be transferred between two neighboring processors is the
difference between their potentials, and is shown along the edges in Figure 4.3. For
example, processor 1 needs to send to processor 2 a load of 11.28 — 2.53 ~ 9.

Table 4.1 gives the result of the method of potentials and that of the diffusion
algorithm on random graphs of varying connectivity. The algorithms have been im-
plemented on a Cray T3D with MPI. It can be seen that in general the method of
potentials is faster, and that for graphs of small connectivity it is considerably faster.
The same conclusion can be drawn when applying the two algorithms on processor
graphs from real applications [43].

When examining the Euclidean norm of migrating flow (Figure 4.4), it was sur-
prising to find that the norm for the diffusion algorithm was usually as small as that
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3(-2.22)

Fi1G. 4.3. The potentials and the amount to be migrated along each edge

TABLE 4.1
The number of iterations (and in brackets, time for convergence, in milli-seconds) for the
algorithm of potentials and the diffusion algorithm, on randomly generated graphs

p | diameter | degree | potential diffusion
64 9 3 25 (19.3) 177 (51.8)
64 5 5 15 (12.5) 57 (21.3)
64 4 7 11 (10.5) 38 (17.6)
64 3 9 8 (9.1) 23 (13.0)
128 87 2 116 (86.7) | 11507 (2915.5)
128 11 3 27 (22.9) 168 (55.8)
128 5 15 (14.5) 65 (27.0)
128 7 13 (13.4) 43 (22.4)
128 9 10 (11.4) 25 (16.1)
256 155 2 223 (182.1) | 32243 (8624.0)
256 14 3 34 (31.0) 155 (53.6)
256 7 5 19 (19.0) 65 (28.3)
256 6 7 15 (17.2) 48 (26.4)
256 4 9 12 (15.2) 45 (28.1)

for the method of potentials, and much smaller than that of algorithms such as the
dimension exchange algorithm. It has now been proved [44] that diffusion type al-
gorithms also have a minimal norm property. In fact it is possible to prove a rather
general result [45] that if a flow calculation algorithm is based on the polynomial of
the weighted Laplacian, I#+1) = p, (L)I®"), where py, is a k-th order polynomial such
that pg (0) = 1, then the flow generated, provided that the algorithm converges, solves
(4.4). In other words, all polynomial based flow calculation algorithms, including the
diffusion algorithm (4.3), generate exactly the same minimal flow as the algorithm of
potentials, provided that the same edge weights c;;’s are used. In terms of the rate of



LOAD BALANCING FOR UNSTRUCTURED MESH 25

comparing the 2-norms: random load 200*ran, random graph with average degree of 7
1600 T T T T T T T
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F1G. 4.4. Comparing the Euclidean norm of the flow from three algorithms: dimension exchange
algorithm (top solid line), diffusion algorithm (middle broken line) and the algorithm of potentials
(bottom broken line)

convergence, the algorithm of potentials is of course better. It also converges for any
positive edge weights.

4.3.5. Linear programming based algorithms. A possibly better model [43]
of the communication cost in the migration process, as opposed to (4.4), is the maxi-
mum cost of load migration over all processors, that is

cost = max;eg (to +  |zi]).

Here t¢ is the communication latency and « is the subsequent cost of communication
per word. The flow calculation problem then becomes

Minimise {max;cg (to + a |z;])} ,
subject to Az =1b,

which is equivalent to

Minimise ¢,
(4.7 subject to Az =1b, ¢> (to + a |z;]), ¢ € E.
However it is not clear that an efficient parallel algorithm exists for such a linear
programming problem.
Similar linear programming based flow calculation were proposed in [67], where
the problem
Minimise 25“
i3]
subject to Z((Su —05) =1 — l Jjev
=y
OS(S,'J‘SOLZ']', L,JEV; 1o
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was solved. Here a;; is the number of vertices on subdomain ¢ that may be moved
to subdomain j, using a node selection strategy based on layering (see the next sec-
tion). This linear programming problem was solved using the simplex method to give
the flow. The problem has 2|E| variables and |V| + |E| constraints. A multilevel
approach was used to group subdomains into super-partitions, thereby breaking the
linear programming problem into smaller ones to be solved by subsets of processors.
This reduced the overall complexity of solving the linear programming problem.

4.4. Node Selection for Migration. Once the flow is calculated, it is neces-
sary to identify the nodes to be migrated. In doing so, it is essential that the edge-cut
as well as the amount of data migration are minimized in addition to restoring the
balance, and this process has to be in parallel.

In [83] this was achieved by using formula (3.8) to decide the amount of load
to be moved, taking into account the minimization of edge-cut and load balancing.
Nodes are selected using the idea of relative gain (Section 3.4.3). Results in [83] on
an adaptive finite element problem with a mesh of 31172 nodes refined in 8 steps
to 224843 nodes showed that this approach was successful. On the Cray T3D, the
time for each dynamic load balancing associated with each refinement was less than
a second for 64 processors. Furthermore, the edge-cut was competitive with those
produced by repartitioning the meshes. The most telling fact of all was that the
number of nodes migrated was as little as a few percent of the total number of nodes,
compared with near 100% for repartitioning.

In [70, 71], the parallel METIS algorithm [50] was extended to add the capabil-
ity of dynamic load balancing. One of the differences compared to JOSTLE-MD is
that dynamic load balancing was not applied on the original graph. The proposed
algorithm took a two stage approach — the multilevel diffusion stage, followed by the
multilevel refinement stage. When applied to a partitioned mesh with unbalanced
load, the algorithm first generated a multilevel of meshes, one coarser than the other.
Dynamic load balancing was then carried out on the coarse meshes, using either
“directed diffusion” or “undirected diffusion”. The former used the algorithm of po-
tentials of Section 4.3.4 to calculate the flow, while the latter was close to the classical
diffusion algorithm of Section 4.3.1. Boundary vertices were visited in a random order
and moved to the neighbor to achieve load balance. After the load was balanced, mul-
tilevel refinement started and the graph was refined. Boundary vertices were again
visited randomly and checked to see if migration of them to a neighboring processor
would result in reduced deviation from the original partitioning; reduced edge-cut or
improved load balance. The algorithm was compared against JOSTLE-MD and was
shown to be very competitive.

In [67] a layer process was used for node selection. Each boundary node is assigned
alabel equal to the partition that has the maximum number of nodes that are adjacent
to this node. Nodes that are adjacent to the boundary nodes are then marked based
on the labels of the boundary nodes. The process is recursively carried out until all
of the nodes are marked.

In [13, 25, 26], element selection for the so called tiling algorithm and the iterative
tree balancing algorithm is based on the idea of priority, similar to the concept of gain
used in the K-L algorithm. Elements are assigned priorities (initially zero) based on
the locality of their neighbors. An element’s priority is decreased by one for each
neighbor in its own processor, increased by two for each neighbor in an importing
processor, and decreased by two for each neighbor in any other processor.

An important aspect of the node selection process is that nodes need to be selected
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to minimize the data migration in addition to minimizing the edge-cut. In [70], the size
and weight of a vertex are defined as the cost of migrating this vertex and the work load
of this vertex, respectively. A vertex is dirty if it is displaced (no longer on its original
subdomain) in the process of balancing. Two heuristics for reducing the TotalV (the
total sum of the size of dirty vertices after load balancing) and MaxV (maximum of
the sums of the sizes of vertices which migrate into or out of any one partition after
load balancing) were proposed. This is necessary partly because in ParMETIS, load
balancing was carried out on coarse graphs, where each vertex represents a varying
number of original vertices of the graph. Nonetheless the technique can be useful for
applications where the mesh nodes have heterogeneous loads due to, say, the use of
the local time stepping or local spatial approximation schemes.

The first heuristic was proposed to minimize MaxV. It was applied in the multi-
level diffusion stage and involved a suppression factor. The density of the vertex is its
weight divided by its size. What flow calculations give is the amount of load (the sum
of the vertex weights) that need to be migrated to restore the load balance. Clearly
to satisfy a given flow, it is cheaper to send vertices of higher density. Thus it was
proposed [70] that only vertices with a density higher than the average vertex density
of the graph multiplied by the suppression factor qualified for migration. The second
heuristic was proposed to reduce TotalV. Here priority was given to the migration of
dirty vertices by the use of a cleanness factor in the multilevel refinement stage. Only
those clean vertices whose gain is greater than their size times the cleanness factor
were considered for migration. The use of either heuristic may increase the edge-cut
[70], nonetheless it was possible to improve both TotalV and MaxV with only a slight
deterioration of edge-cut.

5. Future Research Topics. Algorithms for load balancing of unstructured
mesh based applications have seen rapid development in recent years. However, some
problems remain.

Although packages such as JOSTLE and ParMETIS can partition and load bal-
ance large meshes very rapidly [83, 70], the scalability of these algorithms remains a
concern, particularly for applications where the load on each processor changes fre-
quently. As pointed out in [83], these algorithms use only integer operations, the
number of which is proportional to the size of the subdomain boundary, with no
“chunky” floating point operations to “hide behind”. Also they may not be load bal-
anced and the communication cost may dominate. These factors make it difficult to
achieve high scalability.

Almost all algorithms use edge-cut as the cost function for minimization. But this
is not necessarily appropriate for all applications. There are a number of limitations
of edge-cut based cost functions [38, 12]. First of all, edge-cut is not necessarily
an accurate measure of the communication time. Factors such as the number of
neighbors, the size of the largest inter-processor boundary among all subdomains, as
well as the start up cost of the communications all come into play. Second, for some
applications, there may be more than one objective that needs to be minimized.

For applications where domain decomposition type solvers or preconditioners are
used, factors such as aspect ratio of the subdomains affect the convergence, through
the interface problem [22, 23]. There have been some studies of special partitioning
algorithms that take this into account [16, 84]. In [16], the reduction of the aspect
ratio of subdomains was achieved through the migration of vertices that were far away
from the geometric center of the subdomain. In [84], the aspect ratio was simplified to
a localized function of the interface surface areas, which was associated with the edges
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of the dual graph. The problem of minimizing the aspect ratio of the subdomains was
transformed to that of minimizing the sum of edge weights cut by the partitioning,
which can be dealt with in a similar way to minimizing the edge-cut. In both studies
the minimization of aspect ratio is balanced against the minimization of edge-cut so
that the communication cost resulting from the partitioning will be kept in check. It
remains to be seen that these aspect ratio based partitioning algorithms do indeed
improve the convergence of the solvers.

In other applications such as multi-physics calculations involving solids and lig-
uids, the computation is carried out in phases and the mesh that is partitioned to
balance the load of one phase of computation does not necessarily balance the other
phases. Conventional graph partitioning algorithms can be viewed as optimization
algorithms that minimize the edge-cut, subject to the load balancing constraint. For
multi-physics calculations there is a need to accommodate two or more load balancing
constraints. In [51] this multi-constraints optimization problem was looked at and a
procedure suggested to solve the problem heuristically. This involved the modifica-
tion of the different stages of the multi-level K-L like algorithm. In particular, in
the graph coarsening stage the criterion for matching vertices was a combination of
heavy edge weights and a balanced sum of vertices weights, assuming that each vertex
has a vector of weights associated with it that represents the amount of work on this
vertex during different phases of the computation. For the refinement stage the K-L
algorithm was modified to take into account the need for minimal edge-cut and to
satisfy the load balancing constraints, by favoring the migration of vertices that will
improve the edge-cut as well as the load balance of the partitioning. The natural
extension of the above is to multi-objective optimization problem, where instead of
minimizing the edge-cut, other objectives such as aspect ratio and load balancing for
multi-phase computation are included.

The limitations of the edge-cut based model for graph partitioning and efforts to
overcome them have resulted in modifications of some of the more popular software
packages. For example in the recent version of METIS (Version 4.01), a number of
new features have been added. These include the ability to handle multi-constraints,
the minimization of the total number of boundary vertices and the minimization of
the maximum connectivity of subdomains.

Apart from modifications of the standard undirected graph based algorithms, al-
ternative graph models have also been suggested to represent the underlying problems
more accurately. A multilevel algorithm based on hypergraphs has been suggested
to minimize communication involved in symmetric and unsymmetric matrix vector
multiplications on parallel platforms [12], while bipartite graphs have been used as a
better model for the problem of minimizing communication cost in parallel iterative
algorithms and preconditioners for unsymmetric systems [38].

The actual migration step of the dynamic load balancing process also deserves
further investigation. Few large scale applications that have full dynamic load balanc-
ing capability exist (but see, e.g., [26])), due to the difficulties involved with regards
to the data structures and book-keeping, in actually moving entities such as meshes,
fields and other physical quantities around the processors. During the dynamic load
balancing process, the mesh on each processor will have to be split and part of the
mesh, together with the field, will need to be sent to the appropriate neighboring pro-
cessors. At the same time each processor will receive meshes and fields and combine
them with what is left to form a single entity. There can be a lot of book keeping
involved and such tasks are best fulfilled with a code written in an object oriented
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manner (see, e.g., [86]).

6. Conclusions. Algorithms for load balancing of unstructured application has
reached a degree of maturity. The static load balancing problem (mesh partitioning)
can be deemed as solved. A number of fast and high quality parallel mesh partitioning
codes are now available. Flow calculation and the node selection part of the dynamic
load balancing problem are also more or less solved.

Some problems still remain. For some applications factors such as aspect ratio
of the subdomains affect the convergence and there are few partitioning algorithms
that take this into account [16, 84]. For multi-phase calculations, mesh partitioning
algorithms that satisfy multiple constraints are needed. Implementation of dynamic
load balancing on large scale applications also deserves further investigation. These
could be areas where new results will emerge and conclusions will be drawn as to the
types of applications where dynamic load balancing is effective.
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