A Parallel Controlled Random Search Algorithm

Y. F. Hu K. C. F. Maguire R. J. Blake
Daresbury Laboratory, Warrington WA4 4AD, UK

May 6, 1999

Abstract

In this paper a parallel Controlled Random Search (CRS) algorithm is
suggested. Unlike the standard CRS algorithms, the parallel algorithm
(PCRS) generates more than one new point in parallel each iteration.
The parallel algorithm has been tested on a Cray T3D parallel computer,
demonstrating reasonablly good scalability for up to 64 processors. The

algorithm has also been compared with genetic algorithms.

Keywords: Global optimization, direct search method, controlled random

search, genetic algorithm, parallel computing.

1 Introduction

With the increase in the accuracy and speed of computer simulations comes the
challenge of using such simulations as a tool for the optimal design of systems and
products. There has been a lot of effort in this area, such as shape optimization of
airfoils and artificial heart components [10, 21], and optimal design of structures

for the reduction of vibrations [12].

1.1 The design optimization problems

Mathematically, many design optimization problems can be viewed as finding
the global minimizer z* of an objective function f over a feasible region S C R".
The point z* € S is a global minimizer if f(z*) < f(z) for all z € S. A number
of global optimization algorithms have been proposed, including deterministic
algorithms [11] and stochastic algorithms [4, 5, 14, 22, 23].

There are a few distinctive features of a design optimization problem

e The cost of evaluating the objective function can be very high. This is due
to the fact that usually the function is not given analytically, but rather
defined by a “black-box” simulation code (such as a CFD code). One

complete simulation is therefore required for each function evaluation.

e In many cases the analytical derivatives are not available and numerical
derivatives must be used instead. Furthermore, the function value can be
subject to noise, making accurate numerical derivatives difficult to calcu-

late.

Taking these features into consideration, global optimization methods that do
not use gradient information can sometimes be preferred over the gradient based

algorithms [6, 7]. Such methods are known as direct search methods.

1.2 Review of controlled random search algorithms

The controlled random search algorithm for minimization is a direct search

method. It is a simple iterative algorithm, typically of the following form

Algorithm CRS

e Step 1. Generate an initial sample G: generate N random points in the

feasible region S. Let x; and z;, be the points with the smallest and largest

function values.

e Step 2. Generate a point: generate a new point x,., € S based on the

information given by the N current sample points.

e Step 3. Contraction: if f(Zpew) < f(zp), delete z;, from the sample G
and enter z,., into GG. Update the best and worst points xz; and zj in the

sample.

e Step 4. Repeat from Step 2 until the function values of the points in the

sample are “close” to each other.

A number of modifications to the original controlled random search algorithm
(CRS) of Price [18] have been proposed [1, 2, 15, 16, 19, 20], the main difference
among them lies in the way the new trial point is generated (Step 2). In the
original algorithm (CRS), the new trial point is defined by selecting a simplex
of n + 1 points, {z1,xs,...,ZTy+1}, randomly from the sample of N points, and

reflecting x,,,; against Z, the center of the simplex. The new point is therefore
Tnew = 2% — Tpy1- (1)

This was modified in [19] by setting x; to be the best point found so far (z; = ;)
and the resulting algorithm is denoted as CRS2. This algorithm was further
modified [20] by employing a Nelder-Mead [17] local search procedure after Step
2, if the new point is found to be better than the current best point. In [15] a
Golden Section line search approach was incorporated into the simplex procedure.
In [1], a local search procedure based on the f§ distribution was applied if CRS
finds a point that is better than the current best.

Most recently Ali et al. [2] proposed CRS6, a modified controlled random

search algorithm. This algorithm used quadratic interpolation of the current

3

best point z;, and two other randomly chosen sample points, to generate a new
point Zyew. A local search procedure based on [-distribution was incorporated
after Step 2 if .. Was better than the current best point x;. Numerical results
showed that CRS6 was considerably more efficient than CRS, with the major-
ity of improvement resulting from the use of quadratic interpolation. The use
of quadratic interpolation in the controlled random search algorithm was also

proposed in [16].

1.3 Genetic algorithms

Another direct search algorithm which has attracted a lot of interest in recent
years is the Genetic Algorithm (GA). This is a member of a more general class of
Evolutionary Algorithms, which imitate the process of evolution. In GAs, a point
in the feasible region is represented by a string. Typically binary coding is used,
but for continuous optimization problems real coding may be preferable. The
algorithm starts with a first generation of strings (initial population). Selected
pairs of strings “crossover” to produce new offspring. Those strings with higher
fitness (smaller function values) have a better chance of being selected and taking
part in this crossover process. The resulting offspring form part of the new
generation, and this process repeats until the deviation within the population
is less than a certain tolerance. During this process strings also have a small
probability of being randomly mutated.

It is interesting to relate the controlled random search algorithm to the GA.
The sample G of the CRS can be considered as the population and N the popu-
lation size; in the crossover phase of the genetic algorithm, m new offspring are
formed by the crossover of the binary (or floating point) representation of selected

parents, while in CRS only one new offspring is generated each iteration, using a

number of strategies including quadratic interpolation of 3 points (as in CRS6,
[2]) or the reflection of a vertex of a simplex against the center of the simplex (as

in CRS, [18]).

1.4 The case for parallel algorithms

Although direct search algorithms are robust and noise tolerant, they tend to
require many more function evaluations to converge to the minimum when com-
pared with gradient based algorithms. For design optimization problems where
function values are expensive to evaluate, if the function values are evaluated
sequentially, the substantial computation time could prohibit the use of such di-
rect search algorithms. One remedy is to modify the algorithms so that many
function evaluations can be carried out at the same time on different processors
of a parallel computer.

GAs are intrinsically parallel, because the crossover and the fitness evaluation
of the offspring can be performed in parallel. On the other hand, CRS, in its
original form, does not have the same parallelism, due to the fact that only one
new point is generated and evaluated at each iteration.

The motivation of this paper is to investigate whether parallelism could be
introduced into the controlled random search algorithms by allowing multiple
offspring to be formed, and whether such parallel algorithms will be efficient.

In Section 2 the parallel CRS algorithm is given together with some imple-
mentation details. The algorithm is tested in Section 3 using a set of standard
test functions on a Cray T3D parallel computer. The parallel CRS algorithm is
also compared with a GA algorithm and is found to be very competitive for the

problems considered.

2 The Parallel CRS algorithm

It is assumed that the parallel CRS algorithm, to be detailed later, will run on
a parallel computer with p processors (p > 1). The algorithm is designed for a
distributed memory parallel computer, where access to the remote memory is far
more expensive than the access to local memory. Test results given later will be
on such a machine, the Cray T3D. However the algorithm would work equally
well on shared memory parallel computers.

It is also assumed that the evaluation of functions is far more expensive than
other computational and communicational costs such as vector-vector operations
or random number generation. This assumption is valid for most design opti-
mization problems.

In the rest of the paper some of the terminology from GAs is used, such as
generation and offspring, which stand for sample and new trial points respectively.
The term generation is also used interchangeably with population.

The parallel controlled random search algorithm, PCRS, is given as follows.

Algorithm PCRS

e Step 1. Generate the initial population G: on each processor, generate N
random points in the feasible region S and evaluate the function values of
N/p of these points (in parallel). Broadcast the function values so that
each processor has a record of the function value of every point in G. Let

x; and zp, be the points with the smallest and largest function values in G.

e Step 2. Generate offspring (“crossover”): on each processor, generate m > 1
offspring in the feasible region and evaluate their function values. Discard
those offspring that are worse than x,, and broadcast the remaining off-

spring and their corresponding function values.

e Step 3. Contraction: sort the current population G together with all the
new offspring, keep the best NV points as the new generation G. Update the

best and worst point x; and xj,.

e Step 4. Repeat from Step 2 until f(z) — f(x)) < e.

As can be seen, in the parallel algorithm the N sample points are replicated
over all processors. The initial NV random points are generated on all processors
by using the same random number generator with the same seed. The function
values are evaluated in parallel by each processor working on a portion of the
generation. The function values are then broadcasted to all processors.

In the Step 2 of the algorithm, m feasible offspring are generated in parallel on
each processor and their function values evaluated. Any of the strategies used in
the sequential CRS algorithm to generate a new trial point can be adopted here.
Those offspring that are better than the worst point in the current generation are
kept. A broadcast will allow each processor to have a copy of all offspring and
their function values. The best NV of all points will form the new generation. Each
processor, when generating the m offspring, uses a different seed for the random
number generator to avoid producing the same offspring as other processors.

If R denotes the strategy of generating the offspring, then the above algorithm
can be written as PCRS(p, m, R), where p is the number of processors and m the
number of offspring per processor. The traditional sequential controlled random

search algorithms can be written as CRS=PCRS(1,1, R).

3 Numerical Results

3.1 “Crossover” strategies

Two “crossover” strategies are used. The first is that of CRS2 [19], as described
in Section 1, equation (1). The resulting algorithm is denoted as PCRS(p, m, A),
where A stands for “simplex”.

The second “crossover” strategy follows that of [2, 16]. Here the best point
a = x; together with two randomly selected points {b, ¢} out of the current
generation are chosen. The i-th component of a new offspring is set to be the

stationary point of the one-dimensional quadratic that interpolates the three

twin-lets {a;, f(a)}, {b;, f(b)}, {ci, f(c)}. Thus

(07 — i) fla) + (¢ — a7) f(b) + (af — b7) f(c)
(bi — ¢i) f(a) + (ci — a;) f(b) + (a; — bi) f(c)

1
(xnew),' = 5

If the denominator is zero (which could happen if the three twin-lets are on a
line), or the offspring 2, is outside the feasible region, then replace b and ¢ with
another two randomly chosen points in the current generation G and restart the
process. The resulting algorithm is denoted as PCRS(p, m, ¢), where ¢ stands for
“quadratic”.

As far as we understand, there is no theoretical justification for the use of such
a 1-dimensional quadratic interpolation on a multidimensional problem. However
the numerical results in [2, 16] clearly demonstrate that this “crossover” strategy
can result in a more efficient algorithm than that based on the use of simplex.
We observed, through numerical experiment on a multi-dimensional quadratic
function, that the offspring generated by the 1-D quadratic interpolation tend to
be randomly distributed, with a high concentration towards the neighborhood of

the minima of the multi-dimensional quadratic.

Table 1: The Test Problems

Function n bound f*
Branin (BR) 9| —5<z; <10 | 0.3978
0<2y <15
Goldprice(GP) 2| —5<4;,<10 3.0000
Shekel5 (S5) 4] 0<z<10|-10.1532
Shekel7 (S7) 4] 0<az <10 |-10.4029
Shekel10 (S10) | 4| 0 <z <10 |-10.5364
Hartman3 (H3) 3 0<g;<1]| -3.8627
Hartman6 (H6) | 6 0<z;<1| -3.3223
Schubert3 (P8) | 3| —10<ax; <10| 0.0000
Schubert5 (P16) | 3 -5 <z;<5] 0.0000
Levyl0 (L10) |10 | —10<z; < 10| 0.0000
Kowalik (KL) 4| 0<2; <042 0.0003
Hosaki (HK) 2| 0<az <5| -2.3460
0 S i) S 6
Powell(PW) 4 -10<2<10| 0.0000

3.2 Numerical results

The two algorithms were implemented in FORTRAN 77 using MPI [24], the
message passing standard. They were tested on a set of 13 test functions, using
up to 256 processors of a Cray T3D parallel computer. For this experiment
the number of offspring on each processor is restricted to one. The size of the

population N is set to

N =10 (n+1),

where n is the number of variables.

Table 1 gives some details of the set of 13 test functions used. Further details of
these test problems can be found [2]. Each test problem involves the minimization
of a function, subject to simple bound constraints. Each algorithm was run 100
times on each of the test functions to even out the fluctuations caused by the use
of random numbers. Each run is terminated when the difference in the function

values between the best and worst points in the population is less than e = 107%.

Table 2: The number of function evaluations of the parallel controlled random
search algorithm PCRS(p, 1, ¢) (based on quadratic interpolation) on 13 test func-
tions.

p= 1 2 4 8 16 32 64 128 256
BR 218 111 o7 31 16 11 10 9 9
GP 182 106 46 25 15 10 9 8 8
S5 845 416 216 118 60 33 23 25 23
S7 827 405 208 106 o7 32 24 22 20
510 855 401 213 107 60 32 23 22 22
H3 257 133 68 37 20 12 10 9 9
H6 927 478 255 128 66 38 23 20 18
P8 261 132 70 37 20 12 10 9 9
P16 601 303 156 80 41 25 15 14 13
L10 1731 877 443 224 118 65 38 26 23
KL 198 101 93 27 15 8 6 6)
HK 148 7 40 21 11 8 7 7 7
PW 1631 769 404 201 101 93 27 27 19

Average 667.77 331.46 171.46 87.85 46.15 26.08 17.31 15.69 14.23

Speedup 1.00 2.01 3.89 7.60 14.47 25.61 38.58 42.55 46.92

A run was assumed to have failed, if the minimum function value found had a
relative error of more than 0.1% compared with the known global minimum, or
if the number of function evaluations on any processor exceeds 10000.

The results of the parallel controlled random search algorithms PCRS(p, 1, q)
and PCRS(p,1,A) are given as follows. In Table 2 and Table 3, the average
number of function evaluations per processor for the successful runs are listed.
The average number of function evaluations are given in the row labelled by “Av-
erage”, which gives an indication of the average efficiency of the algorithm. The
speedups are reported in the last row. This is defined as the average number of
function evaluations on one processor for the sequential algorithms PCRS(1, 1, R),
divided by the average number of function evaluations for the corresponding par-

allel algorithms PCRS(p,1,R) (p > 1). The speedups are also plotted against

10

Table 3: The number of function evaluations of the parallel controlled random
search algorithm PCRS(p, 1, A) (based on simplex) on 13 test functions.

p= 1 2 4 8 16 32 64 128 256
BR 018 261 138 69 39 23 25 25 25
GP 680 346 174 91 46 29 30 30 30
S5 3293 1650 845 426 215 116 80 79 78
ST 3008 1525 768 391 201 109 74 72 71
510 3080 1603 793 400 209 112 76 74 73
H3 917 459 234 121 63 35 29 28 28
H6 4014 2101 1031 541 271 144 79 74 75
P8 1369 701 344 180 94 ol 42 41 40
P16 3375 1703 850 429 222 115 68 66 65
L10 8963 4512 2259 1153 286 307 167 110 114
KL 928 268 135 69 36 19 14 14 14
HK 476 240 125 63 33 20 21 20 20
PW 1957 984 499 253 132 70 49 48 47

Average 2475.23 1257.92 630.38 322.00 165.15 88.46 58.00 52.38 52.30

Speedup 1.00 1.97 3.93 7.69 14.99 27.98 42.68 47.25 47.32

the number of processors in Figure 1.

In Figure 2, the reliability of the two algorithms is plotted against the number
of processors. The reliability is defined as the average percentage of successful
runs over 13 test functions.

From Figure 1 and Tables 2 and 3, it is seen that in terms of the number
of function evaluations, the parallel algorithms scale reasonably well against the
number of processors for up to 64 processors. For example, from Table 2, with
64 processors, algorithm PCRS(64,1,q) takes an average of 17.31 function evalu-
ations. Compared with 667.77 function evaluations for the sequential algorithm
PCRS(1,1,9), this represents a speedup of 38.58. Beyond 64 processors, the im-
provement in the speedup tails off, as is evident from Figure 1. This is because,

for instance, the PCRS(64, 1, ¢) requires on average only 17 function evaluations

11

60

quadratic ——
smplex -+
50 r 1

30

speedup

20

10

1 2 4 8 16 3 6 18 2%
number of processors
Figure 1: The speedup of parallel controlled random search algorithms

PCRS(p, 1,q) (quadratic) and PCRS(p,1,A) (simplex), against the number of

Processors

(see Table 2). This is equivalent to about 16 iterations (generations). On other
the test problems the algorithm sometimes converges in 6-10 iterations. At this
level it is very difficult to improve further. On those functions which require
more function evaluations, there is still ground for improvement. For example
on test problem L10 the number of function evaluation is reduced from 38 on 64
processors to 26 on 128 processors.

The timings of all the experiments are not reported. This is because all the test
functions here are relatively cheap to evaluate. For practical design optimization
problems, the cost of the function evaluation is likely to be much greater than that
for the test functions used here, while sequential overhead and communication

cost per iteration of the algorithm will stay constant. The number of function

12

quadratic ——
100 simplex e
R
z
= 95
=
T
[
:
3 N0 r
85

1 2 4 8 16 3 64 18 2%
number of processors
Figure 2: The reliability of the parallel controlled random search algorithms

PCRS(p,1,q) (quadratic) and PCRS(p,1,A) (simplex), against the number of

Processors

evaluations is therefore a more important measure of the parallel scalability.
Comparing PCRS(p, 1, A) and PCRS(p, 1, ¢), which use simplex and quadratic
interpolation respectively as the “crossover” strategies, it is seen that the former
requires three to four times the number of function evaluations. In terms of
reliability (see Figure 2), PCRS(p, 1, A) is more reliable than PCRS(p, 1, ¢), with
an average reliability of over 97%. In general, the reliability of both algorithms
improves as the number of processors increases. This is because the sequential
algorithm PCRS(1, 1, R) generates one offspring each iteration. It then discards
the worst point in the current generation if the new offspring is found to be better.
In comparison, the parallel algorithm PCRS(p, 1, R) (p > 1) generates p offspring

over p processors, before comparing them with points in the current generation.

13

Table 4: Effect of different number of new points per iteration on a sequential
controlled random search algorithm: reliability and average number of function
evaluations (N F') over 13 test functions.

Algorithms reliability% Average NF' Average NF/p

PCRS(1, 1, q) 87 667.77 667.77
PCRS(1, 2, q) 88 678.77 339.11
PCRS(1, 4, q) 88 688.85 172.21
PCRS(L, 8, q) 89 716.38 77.05
PCRS(1, 16, q) 90 752.54 47.03
PCRS(1, 32, ¢) 90 831.69 25.99
PCRS(1, 64, ¢) 91 974.00 15.22

The parallel algorithm therefore gives the less fitted “parents” more chance of
taking part in the “crossover”, thus allowing more possibilities to be explored.
This increases the likelihood of finding the global minimum.

Note that if the same sequence of random numbers is used, then the parallel
algorithm PCRS(p, 1, R) is mathematically equivalent to the sequential algorithm
PCRS(1, p, R) which generates p offspring each iteration, in the sense that both
should take the same number of iterations. Thus it is interesting to compare the
sequential algorithms PCRS(1, p, R), which generates p offspring per iteration,
with the traditional controlled random search algorithms CRS=PCRS(1,1, R).
Table 4 lists the reliability and the average number of function evaluations on the
set of 13 test functions, for PCRS(1, p, ¢) with p ranging from 1 to 64. As can be
seen the reliability generally increases with the number of offspring generated at
each iteration. The number of function evaluations (IVF') increases slowly. This
implies that the number of iterations, which is roughly (NF — N)/p, decreases
as the number of offspring per iteration increases. The results compares well
withTable 2.

The speedup in Figure 1 and Tables 2 and 3 is defined as the number

14

of function evaluations of a traditional controlled random search algorithm
CRS=PCRS(1,1, R), divided by that of the parallel algorithm PCRS(p, 1, R).
An alternative definition would be to divide the number of function evaluations
of a sequential controlled random search algorithm PCRS(1,p, R) and that of
the mathematically equivalent parallel algorithm PCRS(p, 1, R). We believe that
the former definition of speedup is more appropriate since PCRS(1, 1, R) is the
traditional controlled random search algorithm that we seek to parallelise. From
Table 4, PCRS(1,1, R) also took less function evaluations that PCRS(1, p, R),
thus the speedup figures for the parallel algorithm calculated using PCRS(1, 1, R)

are more realistic.

4 Comparison with Genetic Algorithms

As discussed in Section 2 the controlled random search algorithms and genetic
algorithms are closely related. It is therefore interesting to compare them on the
same set of test functions. A typical genetic algorithm for minimization is as

follows

Algorithm GA
e Step 1. Generate an initial population G of size N.
e Step 2. Generate offspring

— Selection: selecting m < N strings as parents, with the probability of
each string being selected proportional to its fitness (which is inversely

proportional to its function value).

— Crossover: the parents are paired and generate m offspring, which

replace the m least fittest strings.

15

— Mutation: each string has a small probability 5 of being mutated.

e Step 3. Repeat Step 2 until the function values of the points in G are close

to each other.

There are many variants of the above representation of GA. For example, in
the crossover phase of Step 2, the m offspring may replace their parents rather
than m least fittest strings.

Traditionally, strings are represented by binary numbers and crossover is car-
ried out by swapping parts of the strings between parents. However there were
suggestions (see, e.g., [13]) that floating point representation is more natural and
efficient for continuous optimization problems. In a floating point representation
scheme, crossover of parents x = (1, o, ...,2,) and y = (Y1, Y2, - - ., Yn) is carried
out by either swapping floating point numbers, analogous to the binary case, or

using the arithmetical crossover

with a; uniform random numbers in, say, [—0.5, 1.5].

We initially tested a binary coded GA package on the set of test problems
but the results were rather disappointing. In view of the finding in [13] that a
floating point represented GA was more efficient than a binary represented one
on continuous optimization problems, a floating point coded GA was therefore
implemented using the crossover operator (2). The code is sequential and is
in FORTRAN 90. In our implementation of GA, the mutation rate is set to

B = 0.01. The mutation for a string x is carried out by setting

for a randomly selected index ¢. Here XU; and XL, are the upper and lower

bound of the element z; , and 7 is a random number between 0 and 1.

16

Table 5: The number of function evaluations of the parallel GA on 13 test func-
tions.

p= 32 64 128
BR 41 37 32
GP 42 36 31
S5 238 129 86
S7 200 112 78
510 196 107 78
H3 46 31 26
H6 185 142 110
P8 53 41 38
P16 133 74 57
L10 471 366 264
KL 5 5 5

HK 17 14 11
PW 1536 183 60

Average 239.31 94.23 63.38

An important factor in GA is the selection scheme used. Different selection
schemes have different “selection pressure” [9], thus different rates of convergence.
A number of selection strategies, including Stochastic Universal Sampling (SUS)
[3] and tournament selection have been experimented. It was found that the
tournament selection with 3 players performed the best.

The number of offspring, m, to be generated per iteration is found to affect
the performance of the GA. In general, smaller m results in less overall number
of function evaluations for convergence. However a small m also reduces the
parallelism of the GA, since the evaluation of the m new offspring can be done
in parallel. As a compromise m is set to be 0.25 x N and parallelism is adjusted
by changing the population size V.

Table 5 give the number of function evaluations of the GA with the population
size of N = 128, 256 and 512, which resulted in m = 32, 64 and 128 strings being

replaced per iteration. On a parallel computer with more than m processors, the

17

Table 6: Comparing controlled random search algorithms with GA: the average
reliability and the average number of function evaluations per processor.

PCRS(p, 1, 9) PCRS(p, 1, A) GA
p reliability% Average NF reliability% Average NF reliability% Average NF
32 89 26.08 98 88.46 93 239.31
64 93 17.31 99 58.00 98 94.23
128 95 15.69 99 52.38 99 63.38

m new strings can be evaluated in parallel, the number of function evaluations per
processor would therefore be equal to the number of iterations I'T, plus N/m = 4
for the parallel evaluation of the initial population. Reported in the tables are
thus reliability and the projected number of function evaluations NF (=IT+4)
per processor. The results are averaged over 100 runs on a DEC workstation.
Table 6 summarizes the results for GA and the two PCRS algorithms, by listing
the reliability, and the average number of function evaluations per processor per
test problem.

From Table 6, the reliability of the two algorithms to the right are seen to be
similar and both are more reliable than PCRS(p, 1, ¢), although PCRS(p, 1, q) is
more efficient. Comparing Table 5 with the corresponding Table 3, it is inter-
esting to see that the number of function evaluations per processor taken by the
GA correlates well, qualitatively, to that of PCRS(p, 1, A), with the latter being
more efficient. The controlled random search algorithms are indeed closely re-
lated to the genetic algorithms. The differences lie, in the terminology of genetic
algorithms, in the three operators, selection, crossover and mutation, which are
listed in Table 7.

The PCRS is more efficient, due to a number of possible reasons. In PCRS,
the best string is always selected to take part in the crossover of every offspring.

Furthermore, the crossover operators for PCRS are very different from those for

18

Table 7: Different operators for GA and PCRS

operator |Parallel Controlled Random Search| Genetic Algorithms

Selection |best point always selected, tournament; SUS etc
other points randomly selected

Crossover | simplex; swapping digits;
quadratic interpolation arithmetical

Mutation |no yes

the GA. In particular the crossover operator of PCRS(p, m, q) is based on finding
the local minimums using quadratic interpolation and therefore offers better local

convergence, at the cost of reliability.

5 Discussion

In this paper a parallel controlled random search method is suggested. It is found
that the parallel algorithms scale reasonablly well against the number of proces-
sors, for up to 64 processors. For one of the algorithms considered (PCRS(p, 1, q)),
the average number of function evaluations needed per processor to solve the 13
test problems is reduced from 667.77 on one processor to 17.31 on 64 processors,
giving a speedup of 38.6. This significant reduction in the number of function
evaluations makes more realistic the application of controlled random search al-
gorithms to design optimization problem.

The parallel controlled random search algorithm is also compared with the
genetic algorithm. In general the PCRS algorithms are shown to be more efficient
than a floating point coded genetic algorithm on the set of test problems.

The controlled random search algorithm is strongly related to the genetic
algorithm. It would be interesting to explore each algorithm by borrowing oper-

ators from the other. For instance, it would be interesting to use a tournament

19

selection strategy in the PCRS(p, 1, ¢), and to include a mutation phase, in the
hope of improving its reliability. It is also planned to extend the algorithms to

handle problems with general nonlinear constraints.

Acknowledgments

The authors would like to thank the referees for their constructive reviews of the

paper.

20

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

M. M. Ali and C. Storey, Modified controlled random search algorithms,

International Journal of Computational Mathematics 53 (1994) 229-235.

M. M. Ali, A. Torn and S. Viitanen, A numerical comparison of
some modified controlled random search algorithms, Journal of Global

Optimization 11 (1997) 377-385.

J. E. Baker, Reducing bias and inefficiency in the selection algorithms, in
J. J. Grefenstette ed., Proceeding of the Second International Conference on
Genetic Algorithms, (Lawrence Erlbaum Associates, Hillsdale, NJ. 1987),
14-21.

G. Boender, A. Rinnooy Kan, L. Stougie and G. Timmer, A stochastic
method for global optimizaion, Mathematical Programming 22 (1982) 125-
140.

L. De Biase and F. Frontini, A stochastic method for global optimization:
its structure and numerical performance, in L. C. W. Dixon and Szeo, G. P.
eds., Towards Global Optimisation 2 (North Holland Publishing Company,
1978).

R. Fletcher, Practical Methods of Optimization (John Willey & Sons,
Chichester, 1987).

P. E. Gill, W. Murray and M. H. Wright, Practical Optimization (Academic
Press, London, 1981).

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning (Addison Wesley, 1989).

21

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. J. B. Hancock, An empirical comparison of selection methods in
evolutionary algorithms, in T. C. Fogarty ed., Lecture Notes in Computer

Science 865 (Springer-Verlag, 1994) 80-94.

O. Hhattas, B. He and J. F. Antaki, Shape optimization of Navier-Stokes
flows with application to optimal design of articicial heart component,
EDRC12-67-95. The Engineering Design Research Center, Carnegie Mellon
University, Pittsburgh, PA., 1995.

R. Horst and H. Tuy, Global Optimization (Deterministic Approaches)
(Springer-Verlag, Berlin, 1990).

A. J. Keane, Experiences with optimizers in structural design, Adaptive
Computing in Engineering Design and Control, Plymouth, UK, September,
1994.

Z. Michalewicz, Genetic Algorithms + Data Structures = FEvolution

Programs (Sringer-Verlag, 1996).

J. Mockus, V. Tiesis and A. Zilinskas, The application of Bayesian methods
for seeking the extremum, in L. C. W. Dixon and G. P. Szeé eds., Towards

Global Optimisation 2 (North Holland Publishing Company, 1978).

C. Mohan and K. Shanker, A numerical study of some modified versions
of controlled random search method for global optimization, International

Journal of Computer Mathematics 23 (1988) 325-341.

C. Mohan and K. Shanker, A controlled random search technique for
global optimization using quadratic approximation, Asia-Pacific Journal of

Operational Research 11 (1994) 93-101.

22

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

J. A. Nelder and R. Mead, A simplex method for function minimization,

Computer Journal 7 (1965) 308-313.

W. L. Price, A controlled random search procedure for global optimisation,
in L. C. W. Dixon and G. P. Szeé eds., Towards Global Optimisation 2 (North
Holland Publishing Company, 1978).

W. L. Price, Global optimization by controlled random search, Journal of

Optimization Theory and Applications 55 (1983) 333-348.

W. L. Price, Global optimization algorithms for a CAD workstation, Journal
of Optimization Theory and Applications 55 (1987) 133-146.

J. Reuther and A. Jameson, Control theory based airfoil design for potential

flow and a finite volume discretization, ATAA-94-0499 (1994).

A. Torn, A search clustering approach to global optimization, in L. C. W.
Dixon and G. P. Szeé eds., Towards Global Optimisation 2 (North Holland
Publishing Company, 1978).

A. To6rn, Global Optimization, Lecture notes in computer science, Vol. 350

(Springer-Verlag, 1989).

MPI - a message-passing interface standard, special issue, International
Journal of Supercomputer Applications and High Performance Computing,

1994, Vol. 8, No. 3-4. p. 165 et seq.

23

