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Abstract. When drawing graphs whose nodes contain text or graphics,
the non-trivial node sizes must be taken into account, either as part
of the initial layout or as a post-processing step. The core problem is
to avoid overlaps while retaining the structural information inherent in
a layout using little additional area. This paper presents a new node
overlap removal algorithm that does well by these measures.

1 Introduction

Most existing symmetric graph layout algorithms treat nodes as points. In prac-
tice, nodes usually contain labels or graphics that need to be displayed. Naively
incorporating this can lead to nodes that overlap, causing information of one
node to occlude that of others. If we assume that the original layout conveys
significant aggregate information such as clusters, the goal of any layout that
avoids overlaps should be to retain the “shape” of the layout based on point
nodes.

The simplest and, in some sense, the best solution is to scale up the drawing
[23] while preserving the node size until the nodes no longer overlap. This has
the advantage of preserving the shape of the layout exactly, but can lead to
inconveniently large drawings. In general, overlap removal is typically a trade-off
between preserving the shape and limiting the area, with scaling at one extreme.

Many techniques to avoid overlapping nodes have been devised. One approach
is to make the node size part of the model of the layout algorithm. It is assumed
that whatever structure that would have been exposed using point nodes will
still be evident in these more general layouts. Various authors [2,13,21,26] have
extended the spring-electrical model [4,7] to take into account node sizes, usually
as increased repulsive forces. Node overlap removal can also be built into the
stress model [19] by specifying the ideal edge length to avoid overlap along
the graph edges. Such heuristics, however, cannot guarantee all overlaps will
be removed, so they rely on overly large repulsive forces, or the type of post-
processing step considered next.

An alternative approach is to remove overlaps as a post-processing step after
the graph is laid out. Here the trade-off between layout size and preserving the
graph’s shape is more explicit. A number of such algorithms have been proposed.
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For example, the Voronoi cluster busting algorithm [10,22] works by iteratively
forming a Voronoi diagram from the current layout and moving each node to the
center of its Voronoi cell until no overlaps remain. Although roughly maintaining
relative node positions, the overall affect is to lose much of the layout structure.

Another group of post-processing algorithms is based on maintaining the or-
thogonal ordering [25] of the initial layout as a way to preserve its shape. A
force scan algorithm and variants were proposed [14, 17,21, 25] based on these
constraints. More recently, Marriott et al. [3,23] have presented a quadratic
programming algorithm which removes node overlaps while minimizing node
displacement and keeping the orthogonal ordering. An orthogonal ordering in-
variant is fairly effective at preserving structure, but it still cannot ensure that
relative proximity relations between nodes are preserved, while at other times,
it is too restrictive. Also, some of these algorithm require, in practice, separate
horizontal and vertical passes which often results in a layout with a distorted
aspect ratio (e.g., Fig. 2, bottom right).

In this paper, we discuss (Sect. 2) metrics for the similarity between two
layouts which we believe better quantifies the desired outcome of overlap removal
than minimized displacement or such simpler measures as aspect ratio or edge
ratio. We then present (Sect. 3) a node overlap removal algorithm based on a
proximity graph of the nodes in the original layout. In Sect. 4, we evaluate our
algorithm and others using the proposed similarity measures.

In the following, we use G = (V, F) to denote an undirected graph, with V'
the set of nodes (vertices) and E edges. We use |V| and |E| for the number of
vertices and edges, respectively. We let x; represent the current coordinates of
vertex ¢ in Fuclidean space.

2 Measuring Layout Similarity

The outcome of an overlap removal algorithm should be measured in two aspects.
The first aspect is the overall bounding box area: we want to minimize the area
taken by the drawing after overlap removal. The second aspect is the change in
relative positions. Here we want the new drawing to be as “close” to the original
as possible. It is this aspect that is hard to quantify.

One way to measure the similarity of two layouts is to measure the distance
between all pairs of vertices in the original and the new layout. If the two layouts
are similar, then these distances should match, subject to scaling. This is known
as Frobenius metric in the sensor localization problem [5]. However, calculating
all pairwise distances is expensive for large graphs, both in CPU time and in
the amount of memory, so instead we form a Delaunay triangulation (DT) of
the original graph, then measure the distance between vertices along the edges
of the triangulation for the original and new layouts. If 2° and = denote the
original and the new layout, and Ep is the set of edges in the triangulation, we
calculate the ratio of the edge length
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then define a measure of the dissimilarity as the normalized standard deviation
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is the mean ratio. The reason we measure the edge length ratio along edges of
the proximity graph, rather than along edges of the original graph, is that if
the original graph is not rigid, then even if two layouts of the same graph have
the same edge lengths, they could be completely different. For example, think
of the graph of a square, and a new layout of the same graph in the shape of a
non-square rhombus. These two layouts may have exactly the same edge lengths,
but are clearly different. The rigidity of the triangulation avoids this problem.

Notice that oqist (2%, ) is not symmetric with regard to which layout comes
first. Furthermore, in theory, this non-symmetric version could class a layout and
a foldover of it (e.g., a square grid with one half folded over the other) as the
same. We can symmetrize it by defining the dissimilarity between layout 2 and °
as (0qist (70, 7) + oqist (7, 2°)) /2. This also resolves the “foldover problem”. The
symmetric version may be more appropriate if we are comparing two unrelated
layouts. Since, however, we are comparing a layout derived from an existing
layout, we feel that the asymmetric version is adequate.

An alternative measure of similarity is to calculate the displacement of ver-
tices of the new layout from the original layout [3]. Clearly a new layout derived
from a shift, scaling and rotation should be considered identical. Therefore we
modify the straight displacement calculation by discounting the aforementioned
transformations. This is achieved by finding the optimal scaling, shift and rota-
tion that minimize the displacement. The optimal displacement is then a measure
of dissimilarity.

We define the displacement dissimilarity as

O'disp(xov :E) = minPERz,e,TER Z ||70Txl +p— x(i)HQv (1)
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where r is the scaling, 6 the rotation with 7' = T'() its rotation matrix, and
p € R? is the translation. Solving this is a known problem in Procrustes analysis
[1,11] and the solution (the Procrustes statistic) is

odisp (20, 2) = Tr(X°X°") — (Tr((XTX°X°" X)3)2Tr(XTX),  (2)
where X is a matrix with columns z; —#, X° is a matrix with columns 29 —z°, and
7 and z° are the centers of gravity of the new and original layout. In the above
we do not consider shearing, since we believe a layout derived from shearing of
the original should not be considered identical to the latter.



3 A Proximity Stress Model for Node Overlap Removal

Our goal now is to remove overlaps while preserving the shape of the initial
layout by maintaining the proximity relations. To do this, we first set up a rigid
“scaffolding” structure so that while vertices can move around, their relative
positions are maintained. This scaffolding is constructed using a proximity graph
[18]. Here again, we work with the Delaunay triangulation.

Once we form a DT, we check every edge in it and see if there are any node
overlaps along that edge. Let w; and h; denote the half width and height of the
node i, and z9(1) and 2?(2) the current X and Y coordinates of this node. If i
and j form an edge in the DT, we calculate the overlap factor of these two nodes
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For nodes that do not overlap, ¢;; = 1. For nodes that do overlap, such overlaps
can be removed if we expand the edge by this factor. Therefore we want to
generate a layout such that an edge in the proximity graph has the ideal edge
length close to tjj|zf — 29||. In other words, we want to minimize the following
stress function

> wiy (o — x| — diy) % (4)
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Here dij = sijl|z] — 29| is the ideal distance for the edge {4, 7}, s;j is a scaling
factor related to the overlap factor t; (see (6)), wi; = 1/||d;||? is a scaling factor,
and Ep is the set of edges of the proximity graph. We call (4) the prozimity
stress model in obvious analogy with the standard stress model [19]

> wy (s — ] = dig) 2, (5)
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where dj; is the graph theoretical distance between vertices ¢ and j, and wy; is a
weight factor, typically 1/d;;%.

Because DT is a planar graph, which has no more than 3|V| — 3 edges, the
above stress function has no more than 3|V| — 3 terms. Furthermore, because
DT is rigid, it provides a good scaffolding that constrains the relative position
of the vertices and helps to preserve the global structure of the original layout.

It is important that we do not attempt to remove overlaps in one iteration
by using the above model with s;; = ¢;;. Imagine the situation of a regular mesh
graph, with one node ¢ of particularly large size that overlaps badly with its
nearby nodes, but the other nodes do not overlap with each other. Suppose
nodes 7 and j form an edge in the proximity graph, and they overlap. If we
try to make the length of the edge equal t;]|z) — 2|, we will find that t; is a
number much larger than 1, and the optimum solution to the stress model is to
keep all the other vertices at or close to their current positions, but move the
large node 7 outside of the mesh, at a position that does not cause overlap. This



is not desirable because it destroys the original layout. Therefore we damp the
overlap factor by setting
Sij = min(tij, Smax) (6)

and try to remove overlaps a little at a time. Here sy ax > 1 is a number limiting
the amount of overlap we are allowed to remove in one iteration. We found that
Smaxz = 1.5 works well.

After minimizing (4), we arrive at a layout that may still have node overlaps.
We then regenerate the proximity graph using DT and calculate the overlap
factor along the edges of this graph, and redo the minimization. This forms an
iterative process that ends when there are no more overlaps along the edges of
the proximity graph.

For many graphs, the above algorithm yields a drawing that is free of node
overlaps. For some graphs, however, especially those with nodes having extreme
aspect ratios, node overlaps may still occur. Such overlaps happen for pairs of
nodes that are not near each other, and thus do not constitute edges of the
proximity graph. Fig. 1(a) shows the drawing of a graph after minimizing (4)
iteratively, so that no more node overlap is found along the edges of the Delaunay
triangulation. Clearly, node 2 and node 4 still overlap. If we plot the Delaunay
triangulation (Fig. 1(b)), it is seen that nodes 2 and 4 are not neighbors in the
proximity graph, which explains the overlap. To overcome this situation, once
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Fig.1. (a): A graph layout where nodes 2 and 4 overlap. (b): the proximity graph
(Delaunay triangulation) of the current layout. No two nodes linked by an edge of the
proximity graph overlap.

the above iterative process has converged so that no more overlaps are detected
over the DT edges, we apply a scan-line algorithm [3] to find all overlaps, and
augment the proximity graph with additional edges, where each edge consists of
a pair of nodes that overlap. We then re-solve (4). This process is repeated until
the scan-line algorithm finds no more overlaps.

We call this algorithm PRISM (PRoxImity Stress Model). Concerning its
complexity, Delaunay triangulation can be computed in O(|V|log(|V])) time [6,
12,20]. The scan-line algorithm can be implemented to find all the overlaps in
O(l|V](log|V| +1)) time [3], where [ is the number of overlaps. Because we only
apply the scan-line algorithm after no more node overlaps are found along edges



of the proximity graph, [ is usually a very small number, hence this step can be
considered as taking time O(|V'|log|V]).

The proximity stress model (4), like the standard stress model (5), can be
solved using the stress majorization technique [8] with a conjugate gradient
algorithm. Because we use DT as our proximity graph and it has no more than
3|V | — 3 edges, each iteration of the conjugate gradient algorithm takes a time
of O(|V)).

Overall, therefore, PRISM takes O(t(mk|V| + |Vl]log|V]|)) time, where ¢ is
the total number of iterations in the two main loops, m is the average number
of stress majorization iterations, and k the average number of iterations for the
conjugate gradient algorithm.

4 Numerical Results

To evaluate the PRISM algorithm and other overlap removal algorithms, we
apply them as a post-processing step to a selection of graphs from the Graphviz
[9] test suite. This suite, part of the Graphviz source distribution, contains
many graphs from users. As such, these are good examples of the kind of graphs
actually being drawn.

Our baseline algorithm is Scalable Force Directed Placement (SFDP) [16], a
multilevel, spring-electrical algorithm. Using the layout of SFDP, we then apply
one of the overlap removal algorithms to get a new layout that has no node
overlaps, and compare the new layout with the original in terms of dissimilarity
and area.

In Table 1, we list the 14 test graphs, the number of vertices and edges, as
well as CPU time! for PRISM and three other overlap removal algorithms. The
graphs are selected randomly with the criteria that a graph chosen should be
connected, and is of relatively large size. We compared PRISM with an imple-
mentation in Graphviz of the solve_VPSC algorithm [3]%, hereafter denoted as
VPSC, as well as VORO, the Voronoi cluster busting algorithm [10,22]. The
final algorithm is the ODNLS algorithm of Li et al. [21], which relies on varied
edge lengths in a spring embedder.

The initial layout by SFDP is scaled so that the average edge length is 1
inch. From the table, it is seen that PRISM is usually faster, particularly for
large graphs on which it scales much better. The others are slow for large graphs,
with VORO the slowest.

Table 2 compares the dissimilarities and drawing area of the four overlap
removal algorithms. The smaller the dissimilarities and area, the better. The
ODNLS algorithm performs best in terms of smaller dissimilarity, followed by
PRISM, VPSC and VORO. In terms of area, PRISM and VPSC are pretty close,

1 All timings were derived on a 4 processor, 3.2 GHz Intel Xeon CPU, with 8.16 GB
of memory, running Linux.

2 A stand alone version of solve_ZVPSC by the authors of this algorithm has also
been tried but was found to offer no advantage over VPSC. VPSC itself was also
contributed originally by the same authors to Graphviz.



Table 1. Comparing the CPU time (in seconds) of several overlap removal algorithms.
Initially the layout is scaled to an average edge length of 1 inch.

Graph | [V] | |E] [PRISM|VPSC|[VOROJODNLS
b100 |1463|5806| 1.44 |14.85]| 350.7 | 258.9
b102 |302(611| 0.14 | 0.10 | 4.36 5.7
b124 79 [281| 0.03 | 0.01 | 0.02 0.5
b143 | 135|366 | 0.04 | 0.01 | 0.47 1.3

badvoro|1235|1616/ 0.54 |71.15|351.51| 73.6
mode |213(269| 0.09 | 0.09 | 2.15 2.1

ngkl10_4| 50 |100| 0.01 0.00 | 0.02 0.14
NaN 76 | 121 0.01 0.01 | 0.11 0.27
dpd | 36 [108] 0.01 | 0.01 | 0.02 | 01
root [1054(1083| 0.89 7.81 |398.49| 46.9
rowe | 43 | 68 | 0.00 | 0.00 | 0.04 | 01
size | 47 | 55 | 0.01 | 0.00 | 0.06 | 0.09
unix 41 | 49 0.01 0.00 | 0.04 0.07

xx_ |302|611] 0.13 |0.10 | 819 | 5.67

and both are better than ODNLS and VORO, which can give extremely large
drawings. Indeed, in terms of area, scaling outperformed ODNLS and VORO in
20%-30% of the examples.

Comparing PRISM with VPSC, Table 2 shows that PRISM gives smaller
dissimilarities most of the time. The two dissimilarity measures, 045t and ogisp,
are generally correlated, except for ngk10_4 and root. Based on oy;s:, VPSC is
better for these two graphs, while based on o4;sp, PRISM is better. The first
row in Fig. 2 shows the original layout of ngk10.4, as well as the result after
applying PRISM and VPSC. Through visual inspection, we can see that PRISM
preserved the proximity relations of the original layout well. VPSC “packed” the
labels more tightly, but it tends to line up vertices horizontally and vertically,
and also produces a layout with aspect ratio quite different from the original
graph. It seems that o4;s; is not as sensitive in detecting differences in aspect
ratio. This is evident in drawings of the root graph (Fig. 2, second row). VPSC
clearly produced a drawing that is overly stretched in the vertical direction, but
its 04ist 18 actually smaller than that of PRISM! Consequently, we conclude that
Odisp May be a better dissimilarity measure.

The fact that VPSC can produce very tall and thin, or very short and wide,
layouts is not surprising, and has been observed often in practice. VPSC works
in the vertical and horizontal directions alternatively, each time trying to remove
overlaps while minimizing displacement. As a result, when starting from a layout
with severe node overlaps, it may move vertices significantly along one direction
to resolve the overlaps, creating drawings with extreme aspect ratios. In fact,
for 9 out of 14 test graphs, VPSC produces layouts with extreme aspect ratios.
PRISM does not suffer from this problem.



Table 2. Comparing the dissimilarities and area of overlap removal algorithms. Results
shown are odist, 0disp and area. Area is measured with a unit of 106 square points.
Initially the layout is scaled to an average length of 1 inch.

Graph PRISM VPSC VORO ODNLS
Odist|Odisp| aI€a |Odist |Tdisp| Ar€a |Odist|Odisp| ar€a |0dist|Odisp| area
b100 |0.74]0.38{14.05/0.76 | 0.72 [18.91| - - - 10.33(0.20 [1.02E3

b102 |0.44]0.25|2.45(0.58| 0.8 [2.71| 0.8 | 0.3 | 31.79 |0.30|0.16 | 53.13
b124 |0.65]0.37|1.04 {0.78(0.73|0.91 |0.86|0.39 | 13.42 |0.33|0.19| 14.79
b143 (0.59]0.35| 1.5 [0.78(0.83|2.16 |0.99]0.45| 22.91 |0.49|0.34| 23.79
badvoro|0.34|0.15 |12.58{0.61 | 0.75 [13.85( 2.29| 0.65 |3.01E3| 0.31| 0.26 | 318.66
mode |0.59(0.37|0.79 {1.02]0.77|1.29 |0.97]|0.54 | 10.84 |0.38]0.27| 49.45
ngk10.4(0.41|0.16 | 0.33 |10.39| 0.3 | 0.25 [0.48|0.26 | 0.52 [0.22|0.13| 2.30
NaN | 0.4 | 0.2 ]0.72]0.54{0.65|0.71|0.56|0.28 | 5.04 |0.26|0.15| 5.10
dpd |0.34{0.18]0.25 [0.51| 0.4 | 0.18 |{0.48]0.32| 0.45 |0.37]0.29| 1.30
root [0.71| 0.3 [16.99] 0.6 |0.75]17.68(4.09|0.94 |6.93E9(0.29 | 0.22 {950.01
rowe |0.33]0.14]0.22|0.44(0.31|{0.19|0.49/0.26 | 0.95 |0.27]0.12| 2.10
size |0.37| 0.2 [0.47]0.77|0.74| 0.4 [0.62|0.35| 1.27 [0.32|0.20| 4.14
unix |0.39]0.23]0.39 {0.51|0.67|0.36 | 0.6 |0.35| 0.85 |0.26]0.13| 2.35
xx |0.42]0.25|3.96 {0.57]0.82| 3.9 [0.97]|0.34 | 58.83 |0.29]|0.14| 74.00

ngk10_4+VPSC

210802067791

~ *
root root+PRISM root+VPSC

Fig. 2. Divergence of dissimilarity measures: for both graphs, og4;s: estimates that
VPSC gives layout closer to the original, while 04,5, predicts the opposite.
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We experimented with layouts initially scaled sufficiently so that relatively
fewer nodes overlap. For example, when initial layouts were scaled to give an
average edge length equal to 4 times the average node size, we found that the
performance of VPSC was improved. Nevertheless it still suffered from extreme
aspect ratio on at least 5 out of the 14 graphs. Figure 3 shows two of these
graphs.

badvoro badvoro+PRISM badvoro+VPSC

mode mode+PRISM mode-+VPSC

Fig. 3. Comparing PRISM and VPSC on two graphs. Original layouts are scaled to
have an average edge length that equals 4 times the label size.

Overall, quantitative and visual comparison of the drawings of these 14
graphs, as well as drawings for graphs in the complete Graphviz test suite (a
total of 204 graphs in March 2008), shows that PRISM performs very well, and
is overall better and faster than VPSC and VORO. The ODNLS algorithm pre-
serves similarity somewhat better than PRISM, but at much higher costs in term
of speed and area.

As a demonstration of the scalability of PRISM, we consider its application
to a large graph. This is a tree from the Mathematics Genealogy Project [24].
Each node is a mathematician, and an edge from node i to node j means that j
is the first supervisor of i. The graph is disconnected and consists of thousands of
components. Here we consider the second largest component with 11766 vertices.
This graph took 31 seconds to layout using SFDP, and 15 seconds post-processing
using PRISM for overlap removal. Important mathematicians (those with the



most offspring) and important edges (those that lead to the largest subtrees)
are highlighted with larger nodes and thicker edges. Figure 4 gives the overall
layout, which shows that PRISM preserved the tree structure of the layout very
well after node overlap removal. Figure 5 gives a close up view of the details of a

Fig. 4. The second largest component from the Mathematics Genealogy Project.

small area in the center-left part of Fig. 4. Additional drawings of this and other
components of the Mathematics Genealogy Project graph, including that of the
largest component, are available [15].

5 Conclusions and Future Work

A number of algorithms have been proposed for removing node overlaps in undi-
rected graph drawings. For graphs that are relatively large with nontrivial con-
nectivities, these algorithms often fail to produce satisfactory results, either be-
cause the resulting drawing is too large (e.g., scaling, VORO, ODNLS), or the
drawing becomes highly skewed (e.g., VPSC). In addition, many of them do not
scale well with the size of the graph in terms of computational costs. The main
contribution of this paper is a new algorithm for removing overlaps that is both
highly effective and efficient. The algorithm is shown to produce layouts that
preserve the proximity relations between vertices, and scales well with the size
of the graph. It has been applied to graphs of tens of thousands of vertices, and
is able to give aesthetic, overlap-free drawings with compact area in seconds,
which is not feasible with any algorithm known to us.

It is possible that algorithms such as VPSC, which rely on separate passes in
the X and Y directions, might be improved by randomizing which overlaps are



Fig. 5. Close-up view of the center-left part of Fig. 4.

removed in which pass or by gradually removing overlaps using many alternating
X and Y passes. This would, however, further increase their computational cost,
which is already much higher than the algorithm proposed in this paper.

For future work, we would like to extend the overlap removal algorithm to
deal with edge node overlaps. We would also like to explore the possibility of
using the proximity stress model for packing disconnected components.
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