
Intelligent Graph Layout Using Many Users’ Input

Xiaoru Yuan, Member, IEEE, Limei Che, Yifan Hu and Xin Zhang

Fig. 1. Two layouts that combine many users’ input sub-graphs using our Laplacian Constrained Distance Embedding (LCDE) algo-
rithm. Layout configurations of the input subgraphs are well preserved in the final layouts of the merged graphs. The number under
each subgraph is the similarity score between the user layout and the layout of this subgraph in the merging result (GLCDE and G′LCDE).

Abstract—In this paper, we propose a new strategy for graph drawing utilizing layouts of many sub-graphs supplied by a large group
of people in a crowd sourcing manner. We developed an algorithm based on Laplacian constrained distance embedding to merge sub-
graphs submitted by different users, while attempting to maintain the topological information of the individual input layouts. To facilitate
collection of layouts from many people, a light-weight interactive system has been designed to enable convenient dynamic viewing,
modification and traversing between layouts. Compared with other existing graph layout algorithms, our approach can achieve more
aesthetic and meaningful layouts with high user preference.

Index Terms—graph layout, Laplacian matrix, force directed layout, stress model, merging, editing, crowd sourcing

1 INTRODUCTION

Graphs are used widely to represent physical networks, social connec-
tions, or other abstract relationships. Graph drawing algorithms aim
at producing pleasant and readable visual representation of graphs.
Traditional graph layout methods, such as force-directed or spectral
layout algorithms, are all automatic graph layout techniques that take
input data and generate one final layout. Several other methods can
produce different styles of layouts, but together these may not satisfy
the users’ special needs. For example, if we want to force a ten-node
circle in the layout, or achieve other specific topological structures
when visualizing graphs from applications in chemistry or biology ,
the aforementioned automatic algorithms cannot retain such user de-
fined local structures.

In this paper we propose algorithms that facilitate user participation
and leverage human intelligence in the process of layout generation.
Through an interactive system, we allow users to edit part of a graph

• Xiaoru Yuan, Limei Che and Xin Zhang are with Key Laboratory of
Machine Perception (Ministry of Education), and School of EECS, Peking
University, E-mail: {limei.che,xiaoru.yuan}@pku.edu.cn.

• Xiaoru Yuan is also with Center for Computational Science and
Engineering, Peking University.

• Yifan Hu is with AT&T Labs, E-mail: yifanhu@research.att.com.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

by changing node positions. We then merge the users’ modification
with the original layout in a well-founded manner to obtain a layout
with user defined subgraphs as constraints (shown in Fig. 1). Here
we use the term users in a general sense – the users could be human
operators, or graph drawing systems designed to handle certain sub-
graphs well (for instance, a tree drawing algorithm for drawing tree
subgraphs). This approach of multi-agents cooperative graph layout
combines the ability of human beings in producing good drawings
of small subgraphs, with the power of automated algorithms in get-
ting the overall layout structure right. Our algorithms can incorporate
drawings of many subgraphs and give an aesthetic layout of the whole
graph, while satisfying the practical needs of the underlying applica-
tion.

The remainder of the paper is organized as follows. In the next sec-
tion, we review related work on constrained layout, divide and con-
quer approaches and previous studies comparing automatic and man-
ual graph drawing. This is followed, in Section 3, by a detailed dis-
cussion of our algorithms. We then give, in Section 4, case studies that
apply our algorithms to incorporate user-generated subgraphs of both
abstract and real world networks, followed by discussions in Section 5.
We conclude with directions for future work in Section 6.

2 RELATED WORK

The area of graph drawing has progressed considerably to the extent
that there are now many layout algorithms for different drawing styles,
from circular layout [6, 19], to hierarchical layout [14], orthogonal
layout [15], and force-directed layout [13, 17, 24]. Efficiency and ef-
fectiveness of force-directed algorithms are further improved by the

multilevel approach and fast force approximation [21, 22, 31], as well
as by parallelization and the use of GPU [16, 3, 23].

Papadopoulos and Voglis [27] proposed a divide and conquer strat-
egy for drawing graphs via modular decomposition. The graph is
decomposed into modules and laid out, and combined using a mod-
ified spring embedder. While the decomposition approach can reveal
interesting regular graph structures (e.g., cliques), the spring embed-
der treats each module as a hyper-node occupying a rectangular area,
without considering individual nodes and edges it represents. Conse-
quently the orientation of each module, which may not be optimal in
the context of the whole graph, is unchanged in the combination pro-
cess. Archambault et al. [2] proposed TopoLayout which recursively
detects topological features inside the graph, and uses the appropriate
algorithms for each feature, it then employs an overlap removal algo-
rithm to remove overlap between subgraphs. These previous works
differ from our work in that we attempt to harness the intelligence of
human beings to help construct aesthetic drawings, and that we pro-
pose a principled approach of combining multiple subgraph drawings.

Even with the availability of many layout algorithms, sometimes it
is not possible to produce a drawing that satisfies the needs of the end
users, in part because aesthetic beauty cannot be captured easily by
equations. In addition, there could be constraints relevant to the field
of application that current algorithms cannot take care of. In recent
years, there have been studies of user generated graphs and how they
compare with automatic graph layout. Van Ham and Rogowitz [30]
allowed users to generate their own layouts of small graphs. By exam-
ining these manually arranged layouts, they verified common aesthetic
standards and found a new criterion – a tendency to arrange the clusters
inside convex-hulls. This criterion is also reflected by one of our cases
(see Section 4). A later work [8] made another comparison of user-
generated and automatic graph layouts, and concluded that the best
of user-generated layouts performed as well as or better than layouts
based on physical models. However, with the exception of a few man-
ual layouts, most of the user-generated layouts were not as good as the
model-based layouts. This is because people with less graph drawing
experience found it difficult to handle graphs of over 50 nodes.

In order to overcome this barrier, in this paper we allow each user to
work on a small part of the graph, which makes it easier for the user to
achieve a good layout. We then merge input from multiple users into
a layout for the full graph. In this way, we combine the intelligence of
users to create a layout which is better than the results from any single
automatic algorithm.

Work on constrained graph layout appeared as early as the
1990’s [29, 26]. Tim Dwyer et al. [9] proposed the DIG-COLA al-
gorithm applied to directed graph drawing. Graph nodes were divided
into different layers, and the constraints were introduced to keep these
layers separated. Dwyer et al. [10] attempted to solve constrained
graph layout problems with a combination of stress majorization and
constrained programming techniques. Constrained optimization also
provided the foundation for Dunnart, a constraint-based graph draw-
ing tool [11]. Further work by Dwyer [7, 12, 4] looked at fast handling
of simple constraints such as linear or circular constraints. The differ-
ence between these approaches and ours is that we are not attempt-
ing to satisfy hard constraints, but rather integrate multiple subgraph
drawings into one, such that individual drawings are satisfied as much
as possible.

Our work uses previous distance embedding techniques. One of the
basic models for distance embedding is the stress model [24], which
can be solved with the stress majorization technique [20].

3 ALGORITHMS FOR INCORPORATING MULTI-USER INPUT

In this section we describe our algorithms for incorporating multi-user
inputs. As a starting point, a graph is laid out using a suitable graph
layout algorithm. This graph is presented to multiple users/agents,
who will inspect the layout, and may choose to change part of the em-
bedding to satisfy their aesthetic preferences or practical needs. The
users/agents could be human operators, or graph drawing systems de-
signed to handle certain subgraphs well – for instance, a tree drawing
algorithm for drawing tree subgraphs. The challenge is then to in-

(a) (b) (c)

Fig. 2. Force analysis in the FDP algorithm and virtual edges in the
CFDP algorithm. (a) A balanced system; (b) an unbalanced system; (c)
virtual edges (dashed) added to edited nodes (green).

corporate these multi-user inputs so that the subgraph drawings are
maintained as much as possible, and at the same time they are pieced
together into a good overall layout of the original graph.

We first give some definitions. We consider undirected graphs with
no loops or multiple edges. Given a graph G = (V,E), with V the
set of nodes (vertices) and E the set of edges, we denote the set of
nodes connected to node i as N(i). The purpose of graph drawing is to
find Cartesian coordinates xi for each node i ∈V , so that the resulting
drawing is aesthetically pleasing.

Let S be a subset of the vertices of graph G, and GS the subgraph
of G induced by S. In our system, a user can define a subgraph by
clicking on nodes, or using the lasso to select a group of nodes. The
user can then adjust the subgraph layout based on his/her preference.
This user defined subgraph layout is saved, along with layouts from
other users. For convenience, from now on we use the term subgraph
to denote both the subgraph of vertices and edges, as well as the user
generated subgraph layout, provided that doing so does not cause am-
biguity within the context.

In the following subsections we first recall the force-directed layout
algorithm, then propose two algorithms for merging users’ subgraphs.
Finally we introduce a measure of similarity between a user input sub-
graph and the merged layout, which allows us to gauge the extent to
which inputs from users are obeyed.

3.1 Constrained Force-Directed Placement
This algorithm uses a variant of the Force-Directed Placement [17]
(FDP) algorithm. We give each subgraph layout a score (see Section
4.1 for the scoring system) – if a layout is of good quality, it is given
a high score. Layouts with the highest score are used for merging.
We calculate the distance of each pair of nodes in the subgraphs, and
take these as constraints. We call the resulting algorithm Constrained
Force-Directed Placement (CFDP). Specifically, in FDP, each node is
influenced by attractive forces which act like springs to pull nodes
together, and repulsive forces which keep nodes a reasonable distance
away from each other. The forces applied to node i by node j are
defined as:

fa(j, i) =
‖xi− x j‖2

K
, {i, j} ∈ E;

fr(j, i) =− K2

‖xi− x j‖
, i, j ∈V,

where K is a force coefficient representing the ideal edge length.
Fig. 2(a) shows a balanced system. For node A, when the distance
between nodes A and B equals K, fa = K and fr = −K. Fig. 2(b)
is a user defined graph. Here node A is pulled far away from B
and C by the user, so the attractive force on node A is now stronger,
| f ′a(B,A)| > | f

′
r(B,A)| and | f ′a(C,A)| > | f ′r(C,A)|. Therefore, if we

use the same force coefficient K for every edge, this is an unbalanced
system, in which node A will move away from the user defined posi-
tion toward its balanced position. In order to maintain the topological

(a) (b) (c) (d)

Fig. 3. The CFDP algorithm will combine many input graphs. When
a subgraph is edited by more than one user, it contains all user inputs
equally by default. (a) Initial layout; (b) a user defined graph1; (c) a
user defined graph2; (d) the result of merging graph1 and graph2 by the
CFDP algorithm.

structure of the user input, we use the user defined distance to replace
the ideal edge length K.

fa(j, i) =
‖xi− x j‖2

udis(i, j)
, {i, j} ∈ ES;

fr(j, i) =− (udis(i, j))2

‖xi− x j‖
, i, j ∈V S

By replacing force constant K with the user defined distances
udis(i, j), if two nodes appear in more than one user input subgraph,
the user defined distance will be the average value of all distances in
these subgraphs. The CFDP algorithm therefore indirectly maintains
multi-user input. When there is no edge between two nodes in a user
subgraph, the force coefficient K is replaced by a user defined length
only when calculating the repulsive force, since there is no attractive
force between the nodes. To further enforce subgraph shapes, we add
virtual edges to construct a complete subgraph. In Fig. 2(c) we have
a graph with 5 nodes and 5 edges, in which a user edits nodes A, B
and C. In this subgraph, there is only an edge between B and C, so we
have to add two virtual edges AB and AC to form a complete subgraph.
We can create virtual edges with the attractive force coefficients cor-
responding to the physical node distances in the subgraph placement.

Even though we add additional constraints to CFDP, for small
graphs, its speed is still faster than FDP. This is because we first take
each subgraph as one hyper node, and build a hyper graph with hyper
nodes and edges which are external to the subgraphs. We then run the
FDP algorithm. Finally, we unfold nodes represented by each hyper-
node with the user defined topological structure, and run the CFDP
algorithm. Since the nodes already maintain their user defined relative
positions, the iteration process converges relatively quickly.

CFDP is able to incorporate user defined layouts of subgraphs, how-
ever, it does so in an indirect way, via the force coefficients. As shown
in Fig. 3, the algorithm will produce a compromised version of layout
if the same subgraph is edited by multiple users with different lay-
outs. As a result, it does not always maintain the user input very well.
We propose a more principled approach which explicitly incorporates
multi-user input in the next subsection.

3.2 Laplacian Constrained Distance Embedding
Since we would like to maintain topological information of the user in-
put subgraphs, if we record the relative position of every pair of nodes,
these positions will be maintained even if the subgraph is subject to
translation.

This idea is used in the scientific visualization literature [1, 25, 28,
32, 33], where the Laplacian vector is used for mesh editing and defor-
mation. In this approach, the Laplace differential between each node
and its neighbors is calculated by the formula:

δi = vi−
1
|N(i)| ∑

j∈N(i)
v j,

and the technique seeks to preserve this differential for all nodes. How-
ever, this approach is not suitable for our purpose, because the Laplace
differential is not preserved if the subgraph is rotated.

Instead, we seek to preserve the distance between each pair of nodes
in the user subgraphs, because by the knowing pairwise distances
among all nodes in a subgraph, we can exactly realize the layout of
the subgraph.

We assume an initial layout of the whole graph. We then collect
multi-user inputs for the layout of subgraphs. If two nodes appear in
a subgraph, their ideal distance is defined by the subgraph layout. If
two nodes appear in more than one subgraph, their ideal distance will
be the average length in all the subgraphs involved. Otherwise, their
ideal distance is the distance in the initial layout. Thus, we can define
a stress energy function as

E = ∑
i, j∈F

wi, j(‖xi− x j‖−di j)
2 +α ∑

i, j∈V S

wi, j(‖xi− x j‖−di j)
2 (1)

Here di j is the ideal distance of nodes i and j, wi, j is the weighting
factor for the edges, and typically equals 1/d2

i j. Note that here the
stress for the original graph is calculated over the set of node pairs
F , which should be a superset of E. For example, F could be the
set of edges in a triangulation of the nodes, plus the original edges.
For simplicity, in this paper we take F = E. Likewise, the second
summation in the stress energy could also be over a subset of node
pairs, but for simplicity we take it to be over all pairs of nodes in the
subgraphs.

Note that all ideal distances are physical distances based on the lay-
out of the original and user subgraphs, not graph distances. By min-
imizing the stress energy, we are balancing two requirements: main-
taining the original layout, and maintaining the user subgraph layouts.
The magnitude of α controls the balance – a large α attempts to main-
tain the user layout as much as possible.

To minimize the stress function, we can use the Cauchy-Schwartz
inequality to bound the terms in (1), and minimize the resulting
quadratic function, as in Gansner et al. [20]. Here we use an easier
and equivalent derivation following [18], by using the fact that the
minimum for (1) is achieved when its gradient vanishes. Thus, taking
the derivative of the function with respect to xi and setting it to zero
gives

∑
i, j∈E

2wi j(‖xi− x j‖−di j)
xi− x j

‖xi− x j‖
+

α ∑
i, j∈V S

2wi j(‖xi− x j‖−di j)
xi− x j

‖xi− x j‖
= 0.

Moving the nonlinear terms to the right hand side, we get

∑
i, j∈E

wi j(xi− x j)+α ∑
i, j∈V S

wi j(xi− x j)

= ∑
i, j∈E

wi jdi j(xi− x j)

‖xi− x j‖
+α ∑

i, j∈V S

wi jdi j(xi− x j)

‖xi− x j‖
.

In matrix form, this is

(Lw +αLS
w)x = (Lw,d +αLS

w,d)x, (2)

where the weighted Laplacian matrices Lw and LS
w are defined as

(Lw)i j =

 ∑{i,l}∈E wil , if i = j
−wi j, if {i, j} ∈ E
0, otherwise

and

(LS
w)i j =

 ∑l∈V S wil , if i = j
−wi j, if i, j ∈V S

0, otherwise

(a) (b)

(c) (d)
Fig. 4. An Example of a graph and its associated Lw. Second row: when
there is a subgraph and its associated matrix Lw. (a) a small graph;
(b) Laplacian Matrix Lw; (c) the graph after editing, pink nodes are the
subgraphs nodes; (d) Laplacian Matrix Lw plus a subgraph Laplacian
matrix LS

w.

and the matrices Lw,d and LS
w,d have elements

(Lw,d)i j =

∑{i,l}∈E

wil dil
‖xi−xl‖ , if i = j

− wi jdi j
‖xi−x j‖ , if {i, j} ∈ E

0, otherwise

and

(LS
w,d)i j =

∑l∈V S

wil dil
‖xi−xl‖ , if i = j

− wi jdi j
‖xi−x j‖ , if i, j ∈V S

0, otherwise

We use the stress majorization technique [20] to solve the nonlinear
system (2). It works as follows: starting from the initial layout of the
whole graph as the |V |×2 matrix x in the right hand side of the linear
system (2), we solve the linear system with the given right-hand-side,
and insert the solution again into the right hand side. This process is
repeated until the layout stabilizes.

Fig. 4 illustrates the two Laplacian matrices. The Laplacian ma-
trix corresponding to the original layout is sparse, while the Laplacian
matrix corresponding to a subgraph is dense. However, the dense part
of the Laplacian is small, because subgraphs are relative small due to
the inability of human users to handle large graphs. Note that for ease
of presentation we assume so far that there is only one subgraph GS,
the case for multiple subgraphs follows the same approach, except that
more small dense matrices are added to the Laplacian of the original
graph.

As the ideal distances come from both the initial layout and the
subgraphs, we first scale the subgraphs to the same proportion as its
placement in the original layout.

We call this method Laplacian Constrained Distance Embedding
(LCDE). Figure 5 compares LCDE with CFDP on a small example. It
is seen that LCDE preserves user input layouts much better. This is
because in CFDP, the user specified subgraph only affects the layout
indirectly through the force coefficients. On the other hand, in LCDE,
the user input layout is used explicitly in the energy minimization. By
including all pairwise distances among nodes in the same subgraph,
we ensure that the user input is mostly maintained.

Fig. 5. Comparison of layouts by CFDP and LCDE. (a): An initial layout
by FDP; (b) and (b’): user defined subgraphs with different number of
nodes and topological shapes; (c) and (c’): layouts generated by CFDP;
(d) and (d’): layouts generated by LCDE. Compared with layouts from
CFDP, those from LCDE are seen to preserve the “hump” shape of the
subgraphs much better.

3.3 Measuring Similarity
In order to have a more rigorous measure of (dis)similarity between
layouts, we use Procrustes Statistic, which is a well known dissimi-
larity measure [5]. This measure attempts to find the best fit between
two inputs, after rotation, translation, and scaling. It then takes the
difference between the transformed inputs as their dissimilarity. Let
one layout be yi, i = 1,2, . . . , |V |, and another xi, i = 1,2, . . . , |V |. We
would like to find a translation vector b, a scaling value ρ and a rota-
tion matrix T that minimizes:

|V |

∑
i=1
‖yi− (ρT xi +b)‖2. (3)

The solution to this problem is

T = (XY TY XT)1/2(Y XT)−1, ρ =
tr((XY TY XT)1/2)

tr(XXT)
, (4)

where X is the 2× |V | matrix of xi’s. The translation vector is b =
1
|V | (∑

|V |
i=1 yi−ρT (∑

|V |
i=1 xi)). The minimal value of (3),

P(X ,Y) = 1− (tr((XTYY T X)1/2))2

tr(XT X)tr(Y TY)
(5)

is known as the Procrustes Statistic.
We use 1−P(X ,Y) to measure the similarity of two layouts: a value

of 1 indicates that two layouts are identical, and a value of 0 means that
they are completely different. This is used for measuring how well the
user input subgraphs are preserved in the merged layout, as well as in
Section 4.1 as part of a scoring system for measuring user input.

4 CASE STUDIES

We designed and implemented an interactive system1 to leverage
users’ drawing capabilities. The system provides a subgraph search

1http://vis.pku.edu.cn/graphviz/GraphViz.html

(a)

(b) (c)

Fig. 6. Interface for editing graph layout. (a) The interface provided to
the users. À Panel to select data sets; Á search box to identify center
node to draw; Â graph layout editing canvas; Ã submit button; (b) a user
defined graph layout; (c) alternative graph layout by another user.

function, by which a user can choose a subgraph, containing a few
nodes up to the whole graph, and adjust its layout. Fig. 6 shows our
interactive graph visualization and manipulation system. The user can
search a node by name, or just double click the item listed below the
search box, then a subgraph, containing the searched node and its di-
rect neighbor nodes, appears in the window on the right hand side.
The users can keep double clicking on the nodes in the graph window
to extend the subgraph to include additional nodes connected to the
clicked nodes. In this study, we are interested in allowing the user to
generate the layout completely unassisted. Thus to prevent users from
being influenced by any layout, when they search a node, we only put
it in the center of the screen and its neighbors are aligned in a circle
(Fig. 6(a)). The user can adjust the layout by dragging the nodes on
screen with the mouse. Then, when satisfied with the change (Fig. 6
(b) and (c)), the user can click on the ’submit’ button on the upper right
corner. The user defined subgraph layout is uploaded to our system via
the Internet. In this way, we can collect many user defined subgraphs
for our case study.

In this section we apply our algorithms to four data sets: a small
abstract graph, some graphs representing biochemical metabolic path-
ways, a co-authorship network, and a movie graph.

4.1 Small abstract graph
The first experimental data set is a small abstract graph with 50 nodes
and 124 edges, taken from a graph layout comparison study by Dwyer
et al. [8]. In that work, the authors compared the user-generated layout
to automatically generated layouts. They asked users to give an aes-
thetic layout of the graph. This proved to be a very difficult task for
most people, since they were not trained to handle a graph of even 50
nodes. As a result the majority of user generated layouts were found
to be inferior to those drawn by a force-directed placement algorithm.

In our study, there are 18 users, among them 13 users are from
our visualization group: one teacher and 8 graduate students with vi-
sualization background, and 4 undergraduate students with computer
science background. The remaining 5 users contributed anonymously
after our online announcement.

We allow users to select many small subgraphs. We found that when

(a)

(b)

(c)

Fig. 7. CFDP and LCDE algorithms result with 3 user input subgraphs.
(a) Initial layout and 3 user defined subgraphs; (b) CFDP layout algo-
rithm result; (c) LCDE layout algorithm result.

there are a few input subgraphs, our algorithms are able to maintain
users’ input subgraphs well. As seen in Fig. 7(a), we first generated
an initial layout by a force-directed layout algorithm. A user searched
for three subgraphs and gave them each a nice layout using our inter-
active system. Two nodes appeared both in subgraph2 and subgraph3.
Fig. 7 (b and c) are the result of merging the three user subgraphs us-
ing CFDP and LCDE algorithm. For subgraph1, the two algorithms
both maintain its shape very strictly, which is not surprising since sub-
graph1 has only one node connecting to the rest of the graph, so the
rest of the graph has less effect on it. For subgraph2 and subgraph3,
the CFDP method maintains the general outline with some distortion
in the empty circles, this is because subgraph2 and subgraph3 have
a common edge with two nodes (conflict nodes), the ideal length is
the average of the distance in each subgraph. Due to this change, a
perfect circle no longer balances all the forces, so the circles have to
deform somewhat to get to a new balanced state. However, the LCDE
algorithm keeps the shape of the circles much better, because although
there are two ideal lengths of the common edge that appear in the stress

function, there are many other virtual edges that act as a scaffolding
to make the circles very rigid, and the shape of the circles are mostly
maintained.

From our graph visualization system, we collected 45 subgraphs of
the abstract graph data set. On inspection, some of these are poorly
laid out. Since we open the system to the public, some users did not
have graph layout experience, and had to spend time exploring the in-
teraction system and accumulating experience of making a nice layout.
Consequently, it is not unusual for users to submit a poor layout, and
we have to filter out such subgraphs. To define what kind of subgraphs
could be included, we establish a scoring system. First, we give each
subgraph a layout score by comparing it with a layout generated by
FDP algorithm using Procrustes Statistic (see Section 3.3).

In addition to the similarity comparison, we would also like to see
few edge crossings, which is not always achieved by the FDP layout.
We rank subgraphs based on each measure, then add the rankings to-
gether to derive a score.

Using our scoring system, we choose the top 23 subgraphs as in-
puts to our algorithms. Wehn we compare the CFDP and LCDE al-
gorithms’ layout with the FDP algorithm, our algorithms are found to
give a good graph layout, and at the same time, each user subgraph is
found to contribute to the whole layout.

In Fig. 8(a) we list 15 reasonable subgraph layouts collected from
many different users. We then give three layouts achieved by the FDP
algorithm (Fig. 8(b)), the CFDP algorithm (Fig. 8(c))and the LCDE
algorithm(Fig. 8(d)). In Fig. 8(c) and (d) the sizes of the pink nodes
show how many time the nodes have been edited, larger nodes have
more edits. As can be seen, CFDP and LCDE produce good layouts. In
the part of the graph where there are more user inputs (left of Fig. 8 (c
and d)), nodes and edges are evenly spaced out, unlike the FDP layout
where one node is very close to two edges. However, the drawings
also reveal a limitation of our algorithms. There is a subgraph shown
in SG10−12, where six nodes form a clique. Even though many users
place the nodes in a circle, in both CFDP and LCDE layouts, this
clique is not laid-out in a circular fashion. The reason is that different
users align these nodes into a circle in different orders, so the distance
of a given pair of nodes varies. Since we only have a few of these
layouts, even the average edge length varies. We believe with more
user inputs, this variation may eventually even out. However, in the
case of limited user input, it is difficult to keep a reasonable shape
for these cliques. Perhaps one possible remedy is to identify cliques,
and always give the user a subgraph where nodes in a clique are in a
pre-arranged circle. We intend to investigate this further in the future.

4.2 Biochemical metabolic pathway

We use biochemical metabolic pathway data to demonstrate the pro-
posed graph layout methods in a real-world scenerio. Small metabolic
pathways are often published with separated distinct canonical lay-
outs. Though it is meaningful and possible to merge many metabolic
pathways into a bigger pathway, it is difficult and tedious to do it by
hand. No existing method can automatically achieve this. We use our
proposed method in such a scenerio as a first step to such an automatic
merging algorithm.

A small set of classical metabolic pathways are used in the experi-
ment: the photosynthesis pathways, cellular respiration pathways and
several other related metabolic processes. Photosynthesis is a process
used by plants to capture the sun’s energy and store it in biochemi-
cal form. Cellular respiration is a set of processes that release stored
biochemical energy. They are fundamental metabolic pathways widely
accessible in biochemical textbooks. There are usually canonical ways
to illustrate them, such as in the form of a cycle or a stick. We collected
several illustrative images of these pathways from Wikipedia pages2,3

and manually transformed them into metabolic pathway graphs. Since
they have shared chemicals, these pathway graphs can be put together
and joined to a bigger connected graph. We also added a few other

2http://en.wikipedia.org/wiki/Citric acid cycle
3http://en.wikipedia.org/wiki/Cellular respiration

small pathways related to these chemicals. Then we manually ob-
tained coordinates of chemical nodes from the same

(a)

(b)

(c)

(d)

Fig. 8. (a) The top 15 user input subgraphs from all 45 collected sub-
graphs. The three layouts below are achieved by (b) FDP, (c) CFDP and
(d) LCDE algorithms, respectively.

(a)

(b) (c) (d)

Fig. 9. Biochemical metabolic pathway. (a) metabolic pathway from a
textbook (l), subgraphs from wikipedia (m), the input subgraphs (r). (b)
a layout by a force-directed layout algorithm. (c) a layout by the CFD
algorithm. (d) a layout by the LCDE algorithm, with numbers indicating
similarity scores.

illustrative images from Wikipedia and transformed them into sub-
graph layouts. Using the whole graph and the subgraph layout data, we
are able to calculate a global layout for the whole merged metabolic
pathway. The merging layouts are shown in Fig. 9 (a), (b) and (c) after
application of FDP, CFDP and LCDE, respectively. The background
shadowed hulls in blue and pink indicate subgraphs SG1 and SG2 from
Fig. 9 (a), respectively. We easily recognize that the symbolic stick of
Glycolysis process and cycles of Citric Acid Cycle are kept.

4.3 Co-authorship network
For the InfoVis 2004 contest, the dataset contains complete metadata
for all the papers of 8 years of InfoVis Conference and their refer-
ences. The metadata includes publication titles, authors, keywords,
abstract, references and links to original papers when available in the
ACM Digital Library. From this dataset, we extract a co-authorship
network, and present its largest connected component, which contains
148 nodes and 349 edges. We produce each subgraph layout by auto-
matic algorithms, SG1 is handled by a hierarchical layout algorithm,
SG2-SG4 and SG6 by a circular layout algorithm, SG5 and SG7 by
a force-directed layout algorithm. We selected these 7 subgraphs by
hand, and left some other nodes in the co-authorship network unedited.
From Fig. 10, we can see that layouts of different styles are merged
naturally in one layout and each subgraph layout is kept very well.

4.4 Movie graph
We crawled the Douban website for movies and their relations.
Douban is a Chinese movie website that provides movie summaries
and comments. Douban has a movie recommendation mechanism.
This system recommends movies related to any given movie, based
on the fact that people who like movie A also like movie B, or C and
so on. We collect this relational information to build a graph, where

(a)

(b) (c)

Fig. 10. Co-authorship network. (a) the subgraph layouts produced by
automatic algorithms. (b) a layout by force-directed layout algorithm.
(c) is a layout by the LCDE algorithm with subgraph constrains. The
numbers around the subgraphs are similarity scores to their input layout.

nodes are movies. If movie B is in the recommendation list of movie
A and A is also in the recommendation list of movie B, we connect A
and B with an edge.

We made an announcement on Sina Weibo, the Chinese equiva-
lent of Twitter, inviting people to use our graph visualization tool by
selecting and layouting subgraphs of the movie graph. Eventually, 131
users submitted subgraph layouts; most of them were students, teach-
ers or others interested in movies or visualization. In our web-based
system, users can search a movie by its name, and other movies related
to it will show up. Then a user can make a layout for these movies if
he is familiar with them. We also provide movie summaries and links
to help users to get to know the movies. Users can then upload their
layouts, and can also share their results with other users.

Fig. 11. Examples both not-included and included subgraphs, as deter-
mined by our score system.

We collected 178 subgraphs from this system, they cover 772
nodes and 1349 edges. We filtered out about 50% of the layouts with
low scores. Fig. 11 lists three examples of excluded subgraphs with
very low scores and three included subgraphs with high scores.

After filtering, we achieved 92 reasonable subgraphs, which form

a disconnected super-graph. Then we used the CFDP and LCDE al-
gorithms to combine these subgraphs together and get the results in
Fig. 12. Fig. 12 (a) shows some of the user input subgraphs; (b) shows
a layout generated by the FDP algorithm, (c) and (d) show the layout
generated by CFDP and LCDE; (e) shows the layout of correspond-
ing input subgraphs with their movie names for the 3 different layout
methods. From the figure, we see that FDP algorithm generated a
reasonable layout with a number of clusters. People can see clusters
clearly, but it is difficult to see the inner structure of cluster since the
attractive forces pull them too close. The CFDP and LCDE algorithms
are both able to achieve a nice layout, as well as maintain user inputs.
For example, subgraphs SG1-SG4 are well laided-out by CFDP and
LCDE. SG2 is a small cluster disconnected from other nodes, while
the other 3 subgraphs are part of user defined subgraphs, for example,
SG1 in (e) is the left part of SG1 in (a), SG4 in (e) is the right part
of SG4 in (a), the left part of SG1 and SG4 in (a) are also edited by
many other users, so their structures cannot be seen clearly. In Fig. 12
(e), comparing the layouts of SG2 by the three algorithms, we see that
both CFDP and LCDE placed sequels of the same movie close to each
other, faithfully preserving the input, since in the mind of the user,
these sequels are more similar to each other than to other movies.

Our system provides a platform to help users visually and inter-
actively express their understanding and feeling of movies and their
relationship. The CFDP and LCDE algorithms are able to maintain
user input layouts, and enable us to collect and integrate users’ knowl-
edge to form a knowledge database with visual representations.

5 DISCUSSION

From the four case studies, we see that both CFDP and LCDE al-
gorithms can maintain, to a large extent, the topological structure of
users’ input subgraphs. CFDP maintains user input indirectly through
force coefficients. It is found to be good at maintaining the struc-
tures of relatively independent subgraphs, for which forces within a
subgraph are less affected by those from other nodes in the whole
graph. On the other hand, the LCDE algorithm preserves the topo-
logical structure of user subgraphs directly through distance preser-
vation, and is found to preserve subgraph topological structures very
well, even when some subgraphs overlap.

Whichever method is used, a key ingredient of our approach is
to leverage humans’ innate sense of order, symmetry and aesthetics in
drawing small subgraphs, and to utilize automated algorithms to incor-
porate these desired characters. In cases where layouts from users are
good and consistent, we have achieved satisfactory results. Further-
more, in some application areas, such as biology and chemistry, scien-
tists are used to seeing illustrations of certain biochemical reactions in
a canonical way. However, even though each reaction graph may be
small, a whole biological pathway network can be very large, making
it hard for scientists to construct an overview of the whole graph while
maintaining the shape of each small graph. Our algorithms are shown
to be able to achieve this difficult task successfully. Another applica-
tion we demonstrated is to combine outcomes from different automatic
layout algorithms into one combined layout. For a graph with many
clusters, a dense cluster may be arranged more suitably by a circular
layout, while a sparse cluster benefits from a hierarchical layout. Tak-
ing advantage of the strength of each layout algorithm helped us in
producing a better layout, which should allow users to understand and
explore the graph more easily.

In our study, we have implemented a system for collecting many
users’ inputs. While the system does not support a collaborative multi-
user input function, with which many users can work together in one
interface at the same time, our web-based user input system does al-
low a user to edit his own subgraph and then submit it, knowing that
his subgraph is eventually merged with other inputs to give a layout
of the whole graph. From observing user inputs, we find that the the
quality of the input subgraphs can be inconsistent. This represents a
challenge to our idea of combining multiple good layouts into a whole.
We proposed a scoring system to help weed out poor input. Neverthe-
less, we would like to investigate better ways to gauge the quality of
user input. In addition, as we collect more and more user subgraphs,

(a) User input subgraphs (b) FDP

(c) CFDP (d) LCDE

(e) Zoom in subgraphs comparison with different algorithms

Fig. 12. A movie graph with 588 nodes and 1167 edges. (a) Collection of 16 subgraphs among overall 92 subgraph layouts submitted by the
users; (b) layout generated by FDP algorithm; (c) layout generated by CFDP algorithm; (d) layout generated by LCDE algorithm; (e) comparison of
subgraph layout in the large graph generated with different algorithms.

we can build a subgraph layout database. The most direct way to uti-
lize this database is to apply a user defined layouts of a subgraph to all
isomorphic subgraphs in a new graph. Finding isomorphic subgraphs,
however, is an NP-hard problem. However, we can learn, for example
layout styles, from the database. Even though two subgraphs are not
exactly isomorphic, if we can extract same characteristics from them,
then one graph can learn from the layout style of the other. This is an
interesting direction to pursue for the future.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed two new methods to combine many users’
input subgraphs into a consistent whole. We believe that human beings
have a natural sense of order and symmetry, and are able to lay out
small graphs well. The algorithms we proposed represent our attempt
to harness the abilities of the users. Furthermore, users of graph draw-
ing systems understand their areas of application better, and often like
to see certain parts of the graph drawn in a particular way to conform
to the conventions of the field. Our algorithms offer a general way to
incorporate users’ input, and the interactive system we implemented
provides a convenient tool for the users to specify their preference and
constraints.

Our approach has its limitations. When the input is of low qual-
ity, or in conflict with each other (as in the case of cliques seen in Sec-
tion 4.1), we would like to find a better way to exclude poor layouts,
resolve the conflicts, and understand users’ intentions. Another area
of interesting research is in extending our interactive system into an
online game, where inputs are scored based on quality measures of the
layouts, and users gain points for better layouts. This would encourage
mass participations, and with better and more scalable merging algo-
rithms, could provide a powerful layout engine for complex networks.

Finally, our approach is not restricted to graph layout. The same
methodology we proposed can be used for crowd-sourcing multidi-
mensional data analysis, where users can help find low-dimensional
embeddings for items (e.g. movies) with multiple attributes.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their valuable
comments.

REFERENCES

[1] M. Alexa. Mesh editing based on discrete laplace and poisson models. In
ACM SIGGRAPH 2006 Courses, pages 51–59, 2006.

[2] D. Archambault, T. Munzner, and D. Auber. Topolayout: Multi-level
graph layout by topological features. IEEE Trans. Vis. Comput. Graph.,
13(2):305–317, 2007.

[3] D. Auber and Y. Chriricota. Improved efficiency of spring embedders:
Taking advantage of gpu programming. In Visualization, Imaging, and
Image Processing - 2007, pages 169–175, 2007.

[4] M. Baur and U. Brandes. Multi-circular layout of micro/macro graphs.
In Proceedings of the 14th international conference on Graph drawing,
volume 4875, pages 255–267, 2007.

[5] T. F. Cox and M. A. A. Cox. Multidimensional Scaling. Chapman and
Hall/CRC, 2000.

[6] U. Dogrusöz, B. Madden, and P. Madden. Circular layout in the graph
layout toolkit. In Proceedings of the Symposium on Graph Drawing, GD
’96, pages 92–100, 1996.

[7] T. Dwyer. Scalable, versatile and simple constrained graph layout. Com-
puter Graphics Forum, 28(3):991–998, 2009.

[8] T. Dwyer, B. L. Danyel Fisher, K. Inkpen Quinn, P. Isenberg, G. Robert-
son, and C. North. A comparison of user-generated and automatic graph
layouts. In IEEE Symposium on Information Visualization, pages 961 –
968, 2009.

[9] T. Dwyer and Y. Koren. Dig-cola: Directed graph layout through con-
strained energy minimization. In Proceedings of the 2005 IEEE Sympo-
sium on Information Visualization, (Infovis’05), pages 65–72, 2005.

[10] T. Dwyer, Y. Koren, and K. Marriott. Constrained graph layout by
stress majorization and gradient projection. Discrete Mathematics,
309(7):1895–1908, 2009.

[11] T. Dwyer, K. Marriott, and M. Wybrow. Dunnart: A constraint-based
network diagram authoring tool. In Proceedings of the 16th international
conference on Graph Drawing, GD’08, pages 420–431, 2008.

[12] T. Dwyer and G. Robertson. Layout with circular and other non-linear
constraints using procrustes projection. In Proceedings of the 17th in-
ternational conference on Graph Drawing, volume 5849/2010 of GD’09,
pages 393–404, 2009.

[13] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[14] P. Eades, Q. Feng, X. Lin, and H. Nagamochi. Straight-line drawing
algorithms for hierarchical graphs and clustered graphs. In Algorithmica,
pages 113–128, 1996.

[15] M. Eiglsperger and M. Kaufmann. Fast compaction for orthogonal draw-
ings with vertices of prescribed size. In the 9th International Symposium
on Graph Drawing, GD ’01, pages 124–138, 2001.

[16] Y. Frishman and A. Tal. Multi-level graph layout on the gpu. IEEE Trans.
Vis. Comput. Graph., 13(6):1310–1319, November 2007.

[17] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and Experience, 21:1129–1164,
1991.

[18] E. R. Gansner, Y. Hu, and S. North. A maxent-stress model for graph
layout. In Proceedings of IEEE Pacific Visualization Symposium, pages
73–80, 2012.

[19] E. R. Gansner and Y. Koren. Improved circular layouts. In Proceedings
of the 14th international conference on Graph drawing, GD’06, pages
386–398, 2006.

[20] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress ma-
jorization. In Proceedings of the 12th international conference on Graph
Drawing, GD’04, pages 239–250, 2004.

[21] S. Hachul and M. Jünger. Drawing large graphs with a potential field
based multilevel algorithm. In Proceedings of the 12th international con-
ference on Graph Drawing, GD’04, pages 285–295, 2004.

[22] Y. Hu. Efficient and high quality force-directed graph drawing. Mathe-
matica Journal, 10:37–71, 2005.

[23] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel mds on the
gpu. IEEE Trans. Vis. Comput. Graph., 15(2):249–261, 2009.

[24] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, 31:7–15, 1989.

[25] Y. Li, E. Zhang, Y. Kobayashi, and P. Wonka. Editing operations for
irregular vertices in triangle meshes. ACM Trans. Graph., 29(6):153:1–
153:12, 2010.

[26] J. Marks, K. Ryall, and S. Shieber. An interactive constraint-based system
for drawing graphs. In Proceedings of the 10th annual ACM symposium

on User interface software and technology, pages 97–104, 1997.
[27] C. Papadopoulos and C. Voglis. Drawing graphs using modular decom-

position. In Proceedings of the 13th international conference on Graph
Drawing, GD’05, pages 343–354, 2005.

[28] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P.
Seidel. Laplacian surface editing. In Proceedings of the 2004 Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing, SGP
’04, pages 175–184, 2004.

[29] R. Tamassia. Constraints in graph drawing algorithms. Constraints,
3(1):87–120, 1998.

[30] F. van Ham and B. Rogowitz. Perceptual organization in user-generated
graph layouts. IEEE Trans. Vis. Comput. Graph., 14(6):1333–1339, 2008.

[31] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In
Proceedings of the 8th International Symposium on Graph Drawing, GD
’00, pages 171–182, 2000.

[32] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh
editing with poisson-based gradient field manipulation. ACM Trans.
Graph., 23(3):644–651, 2004.

[33] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh
editing. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’97, pages 259–268,
1997.

