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Abstract
Optimizing a stress model is a natural technique for drawing graphs: one seeks an embedding into Rd which best
preserves the induced graph metric. Current approaches to solving the stress model for a graph with |V| nodes
and |E| edges require the full all-pairs shortest paths (APSP) matrix, which takes O(|V|2 log |E|+ |V||E|) time
and O(|V|2) space. We propose a novel algorithm based on a low-rank approximation to the required matrices.
The crux of our technique is an observation that it is possible to approximate the full APSP matrix, even when
only a small subset of its entries are known. Our algorithm takes time O(k|V|+ |V| log |V|+ |E|) per iteration with
a preprocessing time of O(k3 + k(|E|+ |V| log |V|)+ k2|V|) and memory usage of O(k|V|), where a user-defined
parameter k trades off quality of approximation with running time and space. We give experimental results which
show, to the best of our knowledge, the largest (albeit approximate) full stress model based layouts to date.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Line and curve generation

1. Introduction

Graphs, denoted as G(V,E), are ubiquitous structures in com-
puting. They are used to model many real-life data sources,
and a visualization of the structure of G quickly gives an ana-
lyst a starting context to guide further exploration. Although
there are many ways to define and draw them, in this paper
we focus on connected undirected graphs with positive edge
lengths, and using the shortest-path distance as the metric
structure.

As computing power increases, so does the size of the
graphs in which we are interested. As the size of these graphs
approach or surpass the amount of memory available in typ-
ical workstations, we would like our algorithms to use no
more than space proportional to the size of the input. Ideally,
running times should also scale linearly with the size of the
data. While solving the stress model is an effective and natu-
ral means of drawing graphs and reducing the dimensionality
of data [GKN04], its formulation requires access to the entire
metric structure of the graph, which means computing the all-
pairs shortest paths matrix and then factorizing a fully-dense
matrix. These steps respectively take O(|V|2 log |E|+ |V||E|)
and O(|V|3) time, and both require O(|V|2) space. In this pa-
per we propose a stress majorization scheme which leverages
linear-algebraic properties of the matrices involved to by-

pass both the dense matrix factorization and all-pairs shortest
paths (APSP) computation.

Stress majorization requires iteratively solving a(n undert-
ermined) linear system Ax = b, where the matrix A is com-
puted from the graph metric structure. As we describe in
Section 3, we use recent work which has shown, remarkably,
that for a large class of matrices, it is possible to get a good
approximation of every element of the full matrix A, while
only having access to the exact values of a small block of A.
This approximation of A will be low-rank: the column space
of the approximation has smaller dimension than A. We will
show how this lets us solve the linear system efficiently. We
summarize the basic steps of our algorithm and the paper in
Figure 1. Our contributions are:

• an experimental analysis of linear-algebraic properties of
matrices involved in the stress majorization, showing they
are represented well by low-rank matrices (Section 3.1),

• a novel algorithm that can solve the full stress majorization
algorithm in time roughly O(k|V|) per iteration, prepro-
cessing time O(k2|V|), and space O(k|V|), if the associ-
ated matrices are represented by a truncated SVD (Sec-
tion 3.2),

• an adaptation of an algorithm by Drineas et al. [DFK∗04]
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which approximates the SVD of the necessary matrices
without computing most of its elements (Section 3.3),
• and an experimental analysis of the effectiveness of this

algorithm for computing layouts for large graphs.

Overall, this improves the previous best full stress ma-
jorization algorithms by a factor of O(|V|/k) in both time
and space, and allows, to the best of our knowledge, the
largest stress-majorization layouts to date.

Notation

We define inv(x) = 1/x if x is different than 0, and inv(x) = 0
otherwise. We will use 1 to be a vector of all ones, and 1̂ to
denote the unit-length constant vector 1/

√
n, where n will be

clear from the context. We use diag(v) to denote a diagonal
matrix whose diagonal entries are given by v.

2. Related Work

One approach for drawing large graphs with unit edge length
involves embedding the graph in Rd using its first few eigen-
vectors of the Laplacian [Hal70]. In a sense, the first non-
degenerate eigenvector (the Fiedler vector) of the graph Lapla-
cian is a good one-dimensional layout of the graph which min-
imizes the edge length. Generalizing this intuition, the first
d eigenvectors should be good embeddings in Rd . Although
with a multilevel implementation [KCH02] the extreme eigen-
vectors can be calculated very quickly, the resulting layouts
tend to under-use the available space and produce a lot of
local clutters. Koren later suggests to use the eigenvectors as
a basis in which to do optimization [Kor04]. This elegantly
reduces the dimensionality of the search space for stress, but
requires good stress solutions to lie inside that span. Gansner
et al. show this is not the case, since they use subspace opti-
mization only as an initialization method [GKN04].

The current state-of-the-art for large-scale graph drawing
utilizes a multilevel representation of the graph and a fast
approximation of the electrical term in the spring-electrical
force model via a Barnes-Hut scheme [HJ04, Hu05, Qui01,
Tun99,Wal03]. These techniques can handle graphs with mil-
lions of vertices and edges, but assume that the graphs have
unit-length edges. While it is possible to incorporate edge
length into the force model, such treatment is heuristic at
best and not as principled as the stress model, and its inter-
action with the multilevel hierarchy is not well understood.
Since stress model based layouts use the graph only indi-
rectly through the metric structure, they work on graphs with
or without specified edge lengths. The algorithm described in
this paper, then, improves the state-of-the-art for large-scale
graph drawing for graph with arbitrary positive edge lengths.

There have been many attempts for drawing large graphs
with non-unit edge lengths. For some classes of mesh-like
graphs, high-dimensional embedding (HDE [HK02]) works
very well, and is extremely simple and fast to implement.
HDE embeds each node of the graph in a high-dimensional
space by using as its coordinates a vector of graph-theoretical

distances to k-centers. This high-dimensional embedding is
then projected to the desired dimension by principal compo-
nent analysis. The main problem with HDE is that in many
graphs, different vertices tend to have exactly the same high-
dimensional coordinates, and end up being projected to the
same point in space. A related algorithm is PivotMDS [BP07],
which finds a fast approximation to the classical scaling prob-
lem [Tor52]. This is achieved by taking a |V|× k submatrix
C of the APSP matrix, normalizing it, and finding the two
or three top eigenvectors of the k× k matrix CTC. The pro-
jection of these k-dimensional eigenvectors back to the |V|-
dimensional space by multiplication with C then gives the
coordinates of the vertices. This layout is used as a starting
point to solve a sparse stress model.

Another attempt at a scalable, distance-sensitive embed-
ding is GRIP [GGK00]. This is a multilevel algorithm, with
coarsening carried out through maximal independent vertex
set based filtration. On coarse levels, a Kamada-Kawai algo-
rithm [KK89] is applied to each node within a local neighbor-
hood of the original graph, but on the finest level, a localized
Fruchterman-Reingold algorithm is used [FR91]. Because of
this last step, the algorithm does not strictly solve a stress
model.

The problem of multidimensional scaling (MDS) is
closely related to graph drawing by the stress model.
Chalmers [Cha96] proposed the first linear-time iteration
algorithm for dimensionality reduction in the context of visu-
alization via stochastic sampling, and Ingram et al. [IMO09]
use a multiscale variant adapted to run efficiently on graphics
cards. In these papers, a single entry of the distance matrix
is usually assumed to be available in constant time. This is
a valid assumption for multidimensional data, but is not the
case for graph data, where graph-theoretical distances have
to be calculated. In contrast, we use algebraic properties of
this matrix to create an approximation to all the entries in the
matrix while only computing a small block. For a thorough
review of the myriad techniques related to MDS, we refer the
reader to the recent review of France and Carrol [FC11].

At the core of our approach is the idea of replacing a dis-
tance matrix, which requires O(|V|2 log |V|+ |V||E|) time to
compute and O(|V|2) space to store, with a low-rank version
of this matrix. In other words, instead of storing an |V|× |V|
matrix M, we store a pair of matrices A and B with dimen-
sions |V|× k and k×|V|, respectively. A judicious choice of
matrices can be made such that AB≈M. Remarkably, for a
large class of matrices M it is possible to find good matrices
A and B without even accessing a large portion of M, even
if M is dense. This idea was first proposed by Drineas et
al. [DFK∗04], where it was proved that the largest singular
values and vectors of matrix M can be approximated well
by the singular values and left singular vectors of a |V|× k
matrix whose columns are sampled from the original matrix
with a probablity proportional to the squared norm of the
columns. This sampling technique works well in our setting,
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Figure 1: An overview of our algorithm. The numbers between brackets indicate the paper sections which describe the
corresponding portion. While the full majorization algorithm for the 16000-node graph (ncvxqp9) shown above took around
forty minutes, the approximate layout we show below took about four minutes and a half. The two results are visually very close.

since getting k columns of the distance matrix requires only
k applications of Dijkstra’s algorithm, with a complexity of
O(k(|E|+ |V| log |V|)).

There are other algorithms that approximate the SVD, such
as Frieze et al.’s technique [FKV04]. Instead of sampling
matrix columns, these algorithms sample matrix entries. This
approach is not suitable for our setting, since calculating the
distance between a random pair of vertices is almost as costly
as one instance of single-source shortest paths. For the same
reason, recent work on near linear time algorithms for solving
Laplacian system, such as the work of Teng [Ten10], does
not appear directly applicable to our problem.

3. Problem setup and derivation

In this section, we describe how to arrive at the approximate
formulation for the stress majorization. If the reader is only
interested in the algorithm for approximate layout, Section 4
shows the full algorithm.

Stress model based graph layout algorithms search for a
layout X placing node i at point Xi, such that the total stress
of the layout S(X) is low, where

S(X) = ∑
i< j

wi j(||Xi−X j||−di j)
2.

The constants wi j decide the influence of pairwise interac-
tions, and are usually taken to be wi j = d−α

i j , where di j is
the graph-theoretical distance between nodes i and j, and
α is a small positive constant. The practice of taking the
shortest graph distance as the ideal edge length dates back at
least to 1980 in social network layout [KS80], and in graph
drawing using classical MDS [BP09], but is often attributed
to Kamada and Kawai [KK89]. The most popular choice is
α = 2, but in this paper we will consider only the case α = 1,
for the reasons in Section 3.4. More recently, Gansner et
al. [GKN04] proposed a stress majorization procedure for

solving the stress model, by showing that a resulting layout
X is a local minimum of S(X) if

LωX = LX X , (1)

Lω
i j =

{
−wi j, i 6= j
∑k 6=i wik, i = j (2)

LX
i j =

{
−wi jdi j/||Xi−X j||, i 6= j
∑ j 6=i LX

i j, i = j
(3)

To find a minimum using stress majorization, one starts with
an initial guess for X , and iteratively solves the linear sys-
tem (1) using the result of the previous iteration to com-
pute the right-hand side. We refer the reader to Gansner et
al. [GKN04] for further details.

3.1. Low-rank approximations

The low-rank approximations we use in this paper are based
on the singular value decomposition (SVD). Approximations
of this type are only effective for some matrices. This section
illustrates this phenomenon and its impact on our algorithm.
Every matrix M admits a SVD decomposition of the form
M =UΣV T , where U and V are orthogonal, and Σ is a non-
negative diagonal matrix. When the diagonal elements of Σ

are in non-increasing order, setting all but the first k values of
Σ to zero yields a sequence of increasingly-good approxima-
tions of M as k increases. If most values of Σ are relatively
close to zero, actually zeroing them does not change M too
much. The rate of decay of these singular values determines
whether M has a good low-rank approximation: the faster the
values go to zero, the better low-rank approximations of M
will be.

Although it is tempting to approximate Lω directly with
a low-rank version, we split Lω into its diagonal and off-
diagonal elements, Lω = Dω +Oω. The elements of Oω

i j are
simply −wi j, and Dω =−diag(Oω1). As we illustrate with
Figure 2, the rate of decay of the singular values of Oω is
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Figure 2: Comparing the speed of decay of singular values of the Laplacian Lω, and that of the off diagonal matrix Oω, for the
100 smallest symmetric matrices from the University of Florida Sparse Matrix Collection [DH11]. The largest matrix in this
experiment has about 4875 elements. The first row assumes a unit edge weight, while the second row takes the absolute value of
the matrix entries as the edge length. Colors encode the size of the matrices – blue for small matrices and orange for larger
matrices. Each dot shows the position of the 100th singular value, and the approximation error that would be incurred if that
matrix was approximated by a rank-100 matrix. Note that the singular values for Oω decay much faster; in addition, the larger
the matrix, the faster the decay in general, and the better the top 100 singular values cover the whole spectrum.

much faster than that of Lω, and so a rank-k approximation
of Lω via Oω is much better than a direct approximation of
Lω. Consequently, we will build a representation of Lω of the
form

Lω = Dω +Oω =−diag(UΣV T 1)+UΣV. (4)

In other words, we only store U , Σ, and V , and use that to
build the actions of the Lω operator. We now show how to
compute U , Σ, and V , and how to solve Lωx = b with such a
representation.

3.2. SVD-based solver for Lωx = b

Our first observation is that Lωx = b is always under-
determined, even when Oω is full rank. This arises from
the well-known property that the null space of a Laplacian
matrix includes the set of all vectors with constant coordi-
nates c ·1. We assume that every distance di j is finite, and so
the basis for the null space of Lω is exactly {1}, and hence
Lω is singular. This implies that the linear system Lωx = b is
underdetermined, and we look for its minimum-norm solu-
tion, Lω†b, where Lω† is the Moore-Penrose pseudo-inverse
of Lω [GL96].

To solve Lω†b, we use the following identities. Our basic
idea is that since the Laplacian can be approximated by a

low rank update of a diagonal matrix (4), we can use the
matrix inversion lemma, also known as the Woodbury Matrix
Identity [Hag89] (equations (9) and (10)) to find its inverse.
However, since the Laplacian is singular, we work with the
pseudo-inverse. This requires adding a constant matrix and
projecting it out to circumvent the singularity, in Equation (5)
(the identity is easily proven from the definition of the pseudo-
inverse [GL96]).

Lω† = (Lω + 1̂1̂T
)−1− 1̂1̂T

(5)

(Lω + 1̂1̂T
)−1 = (UΣV T +Dω + 1̂1̂T

)−1 (6)

= (A+UΣV T )−1 (7)

A = (Dω + 1̂1̂T
) (8)

(A+UΣV T )−1 = A−1−A−1UT1
−1V T A−1 (9)

A−1 = (Dω)−1− t2t−1
3 tT

2 (10)

T1 = (Σ−1 +VA−1UT ) (11)

t2 = (Dω)−11̂ (12)

t3 = 1+ 〈1̂, t2〉 (13)

In particular, Equations (9) and (10) allow us to solve the
respective inverses with access only to the SVD matrices
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COMPUTE-L̃ω(G,k)

1 centers = K-CENTERS(G,k)
2 D = DISTANCES({i : 0≤ i < n},{ j : j ∈ centers})
3 M̃ij = D−1

i j × column-scale
4 UΣV = SVD(M̃)

5 Sii = sign(uT
i M̂ui)

6 Dω = Diag(UΣSUT 1)
7 return (L̃ω, centers) // L̃ω given as U(ΣS)UT −Dω

Figure 3: Algorithm to compute L̃ω, the approximation to
Lω. In the final line, we do not explicitly carry out matrix
operations. The matrix L̃ω is returned as an abstract linear
operator.

of Oω, without ever carrying out the full multiplications.
Critically, if we only have the first k singular vectors and
values of Oω, we can still solve the approximate inverses, and
in much less time than the full inverse: A−1 is computed via
Equation (10), and T1 is a k× k matrix, which need only be
factorized once in O(k3) time. Notice that the matrix A−1

is never explicitly formed. Solving a system involving Lω†

involves multiplying the right-hand side of Equations (9) with
a vector, which in term involves multiplying the right-hand
side of Equation (10) with vectors.

We now show that, remarkably, we can approximate the
first few singular vectors of Oω without even knowing most
values of Oω.

3.3. Approximate SVDs from column sampling

The derivation above is essential for our algorithm, but cannot
be used directly, for the simple fact that we need the entire Oω

to compute its SVD, and computing the entries of Oω takes
O(|V|(|E|+ |V| log |V|)) time and O(|V|2) space. The main
result we use in this section is due to Drineas et al. [DFK∗04].
In that paper, the authors build a matrix M̃ by randomly sam-
pling k columns of a matrix M with probability pi, where
pi is proportional to the squared length of the i-th column
of M, and scaling them by 1/

√
kpi. They then show that the

expected singular values of M̃ are the top singular values of
M, and that the expected left singular vectors of M̃ are the
corresponding left singular vectors of M. We cannot directly
apply this technique, because computing the exact probabili-
ties pi requires access to the whole matrix Oω. The authors
also show that any probability distribution p̃ can be used,
although this incurs an increase in the estimation variance.

In our case, we use a heuristic solution based on computing
approximate k-centers which we found to work well in prac-
tice. We pick the first node randomly, and pick subsequent
nodes which maximize the graph-theoretical distance to the
selected nodes. These can be found in O(k|V| log |V|) time.
We then compute the single-source shortest paths from these
k vertices. Inverting the distances gives a n× k block of Oω,
which we scale by 1/

√
kpi to obtain M̃. We use the left sin-

gular vectors and singular values of M̃ as the approximations
for U and Σ.

SOLVE-A-1t(Dω, t)

1 t2 = (Dω)−11̂
2 t3 = 1+ 〈1̂, t2〉
3 return (Dω)−1t− (t−1

3 〈t2, t〉)t2
SOLVE-L̃ω†b(L̃ω,b)

1 M = Σ
−1 +UA−1UT

2 // Use SOLVE-A-1t column-by-column to get A−1UT

3 lu = LU-DECOMPOSITION(M) // Computed only once
4 v1 = SOLVE-A-1t(Dω,b)
5 v2 = ULU-SOLVE(lu,UT v1)

6 v3 = SOLVE-A-1t(Dω,v2)
7 return v1− v3

Figure 4: Algorithm to compute the pseudo-inverse of L̃ω

using the matrix inversion lemma.

Drineas et al. do not address the simultaneous computation
of left and right singular vectors, both of which we require.
For symmetric matrices, like Oω, ui = sivi, where si is either
−1 or 1, and indicates whether the corresponding eigenvalue
is positive or negative. We define M̂ as a n×n square matrix
with the columns of M̃ placed at the positions where they
were sampled. As k increases, M̂ approaches Oω, and so
uT

i M̂ui approaches the i-th eigenvalue of Oω. We estimate the
eigenvalues as uT

i M̂ui, and flip the signs of the entries in Σ as
necessary. The full algorithm for the time and space-efficient
pseudo-inverse of Lω is shown in Figure 3.

3.4. Computing LX X efficiently

The main stress majorization loop involves a repeated so-
lution of the linear system LωX t+1 = LX t

X t . While we ap-
proximate Lω with the approximate SVD, the right-hand side
matrix LX t

is still dense, and a naive computation would still
take at least O(|V|2) time.

If we expand LX t
X t , we have

(LX t
X t)i = ∑

j 6=i
wi jdi j

Xi−X j

||Xi−X j||
(14)

This means that each element of the right-hand-side of
the linear system is a weighted sum of the unit direc-
tional vector to vertex i from the other vertices. Since
wi j = 1/di j, this further simplifies to ∑ j 6=i

Xi−X j
||Xi−X j|| . Fol-

lowing the recent practice in many large scale graph draw-
ing algorithms [HJ04, Hu05, QE00], this summation can
be approximated with a Barnes-Hut force approximation
scheme [BH86], through the use of a suitable space decompo-
sition data structure (we used a quadtree). Thus the right-hand-
side of the linear system can be computed approximately in
time O(|V| log |V|).

4. Algorithm

The complete algorithm for approximate stress majorization
is described in Figure 5. With the necessary approximation
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UPDATE-ANCHORS(G, centers, X)

1 Y = X
2 for i in centers
3 Yi =

1
centers (∑ j↔i X j)

4 for i in centers

5 Yi =
∑ j 6=i wi j(X j+di j(Xi−X j)inv(||Xi−X j||))

∑ j 6=i wi j

6 return Y
APPROXIMATE-LAYOUT(G, k)

1 L̃ω,centers = COMPUTE-L̃ω(G,k) // Fig 3
2 Xnew = initial guess for the layout
3 repeat
4 X = Xnew
5 rhs = LXX // Through Barnes-Hut
6 Xnew = SOLVE-L̃ω†b(L̃ω,rhs) // Fig. 4
7 Xnew = UPDATE-ANCHORS(G,centers,Xnew)
8 until |Xnew−X |< ε

9 return Xnew

Figure 5: Our algorithm for determining graph layouts using
approximate stress majorization.

algorithms for the right-hand-side and the pseudo-inverse in
place, our algorithm follows essentially the steps as the stress
majorization algorithm [GKN04]. The stress majorization
algorithm requires an initial guess for vertex placement.

One unfortunate side effect we observed experimentally
is that the k anchor nodes tend to suffer from much worse
placement than the remaining |V|−k nodes. To eliminate this
effect, we introduce an extra step per iteration, applying the
localized optimization suggested by Gansner et al. [GKN04].
All the necessary wi j values for these updates have already
been precomputed, so this takes no extra memory and only
O(k|V|+ |E|) time per iteration.

Throughout all of our experiments, we use as our initial lay-
out the result of Graphviz’s sfdp, a multiscale, spring-electric
force-directed solver. This choice is not essential or critical;
other fast, coarse layout algorithms such as HDE [HK02] or
PivotMDS [BP07] would work as well.

Our prototype algorithm is implemented in C++, using the
Armadillo matrix library for numerical linear algebra [San10],
and LAPACK’s SVD implementation.

4.1. Complexity

We separate the computational complexity of our algorithm
into its preprocessing time and its time per iteration of the
solver. There are three computationally intensive prepro-
cessing steps. First, Dijkstra’s algorithm for computing the
k-columns of Oω (lines 1 and 2 of COMPUTE-L̃ω in Fig-
ure 3) takes time O(k(|E|+ |V| log |V|)). Computing the
SVD of the resulting |V|× k matrix (line 3 of COMPUTE-L̃ω

in Figure 3) takes time O(|V|k2), and the LU decompo-
sition of M takes time k3 (performed once on line 3 of
SOLVE-L̃ω†b in Figure 4). All combined, these give a prepro-
cessing time of O(k3+k(|E|+ |V| log |V|)+k2|V|). On every

Figure 6: Running times for neato, sfdp and our algorithm
(“MARS”) on complete binary trees of the specified size.
Graphs larger than shown are not practical for full stress
majorization: at |V|= 216, simply storing Lw in its entirety
would take 16GB of memory. “MARS-50”, “MARS-25” and

“MARS-13” denote running times for MARS running with
k = 50, k = 25 and k = 13 respectively.

iteration, we must solve the right-hand-side matrix multipli-
cation, which in our case can be done in O(|V| log |V|) time
(see Section 3.4). SOLVE-L̃ω†b takes O(k|V|) time, domi-
nated by LU-SOLVE(lu,UT v1). Finally, UPDATE-ANCHORS

takes O(k|V|+ |E|) time. The total per-iteration time is then
O(k|V|+ |V| log(|V|)+ |E|).

5. Experiments

In this section we provide experimental evidence of the pre-
sented algorithm in Section 4. We first discuss the runtime
performance of the algorithm, and follow it with a discussion
of the quality of the resulting layouts. We call our low-rank
stress majorization algorithm MARS (for “stress Majorization
through Approximate low-Rank SVD”).

5.1. Performance

We start by comparing the performance of MARS to two
recent graph layout techniques, Gansner et al.’s stress-
majorization solver [GKN04] (“neato”) and Hu’s multiscale
force-directed solver [Hu05] (“sfdp”). Both implementations
are open source and available in Graphviz [EGK∗01]. To
compare running times, we run all three algorithms on pro-
gressively larger complete binary trees, from 27−1 to 214−1
nodes on a single processor of a dual quad-core Xeon run-
ning 64-bit Ubuntu 10.10 with 12GB of RAM. The results are
shown in Figure 6. In general, we find that MARS takes about
twice as long as sfdp to compute a layout. See Section 5.3 for
the running times for larger graphs.

We ran other running-time experiments, and found that
although asymptotically the number of edges in the graph is
significant, in practice the running time for MARS seems to
only be dependent on |V| and k, mostly irrespective of the
graph being processed. Finally, we note that we are using the
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Figure 7: A visual analysis of the approximation errors in our algorithm, computing different layouts of a complete binary tree
of 2047 nodes. The top row shows the algorithm when using an exact SVD. The bottom row shows the column-sampling scheme
approximate SVD we describe in the text. From left to right, we use 10, 20, 40 and 80 anchors, respectively.

placement from sfdp as the initial guess for MARS. We have
not included the running time of sfdp because it is possible to
use faster techniques to provide the initial guess for MARS.

5.2. Approximation Tradeoffs and Quality

In this section, we discuss the effects of the different approxi-
mations in our algorithm. We examine these approximations
using a synthetic example of a complete binary tree with
211−1 nodes. We choose this example since a complete bi-
nary tree has a very simple and regular structure, and so it
is possible to visually evaluate the results. There are three
main sources of error in our approximations to the full stress
model. First, we solve a low-rank version of the stress model
via the SVD. Second, we use an approximation to this low-
rank version, since the exact SVD is impractical. Third, we
solve an approximate version of the right-hand side of Equa-
tion (1). We have observed that computing the approximate
right-hand side of Equation (1) by the Barnes-Hut algorithm
(described in Section 3.4) has no noticeable loss of quality
in the resulting layout, and so we only show the first two
sources. These are illustrated in Figure 7. There, “exact SVD”
means taking the top k SVD values of Oω and setting the
rest of the singular values to zero; “approximate SVD” is
the procedure used in MARS where SVD is calculated on a
submatrix samples from columns of Oω.

Inspecting Figure 7, we note that the main source of vi-
sual artifacts for our algorithm comes not from the low-rank
approximation, but from the approximate SVD. We see two
consequences. The first one is that unfortunately it seems that
our current algorithm depends crucially on an accurate SVD,
even though the approximate SVD we use has essentially
been proven optimal by the original authors [DFK∗04]. Still,
this points to an important direction of future work, where

one would engineer alternate Oω matrices, from which exact
SVDs might be computed more efficiently. We speculate that
there is much room for improvement in that area.

5.3. Comparison to other techniques

As a comparison to MARS, we choose HDE and PivotMDS
since they are currently the fastest graph layout algorithms
that also attempts to take into account edge lengths. In addi-
tion, we choose sfdp, arguably the state-of-the-art for large
graph layouts, although it does not utilize edge lengths.

To compare the results of MARS to previously published
techniques, we select a few graphs which highlight the rela-
tive tradeoffs of our approximation schemes. In general, we
find that although the layouts produced by MARS have some
obvious problems, they tend to provide an alternative “global”
view of the structure of the graph. This layout is somewhat
complementary from sfdp, which provides an aesthetically
pleasing layout that is very well tuned locally at the expense
of a global picture of the graph structure. The results are
shown in Figure 8.

Specifically, we use four different graphs. The first one
is 1138_bus, a small graph with 1138 vertices, intended
mostly to show that our approximation scheme appears to
converge to a very pleasing layout with enough columns. sfdp
took 1.4 seconds to compute this layout, while MARS took
3.9 seconds (In general, we find that for sufficiently small
graphs, MARS behaves quite similarly to sfdp, neato and
other high-quality graph drawing algorithms. Thus, the other
examples we present are all larger graphs which challenge
the current state-of-the-art techniques). Next, we use MARS
to compute a layouts of two large trees. The first tree is a
complete binary tree with 131071 nodes, while the second
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Figure 8: The resulting layouts of MARS, compared to those of HDE, PivotMDS and sfdp. In all our examples, we set k = 100.
HDE and PivotMDS run in negligible time for these examples. Going from top to bottom, sfdp takes 1.4, 323, 194, and 865
seconds. MARS takes 3.9, 588, 1915 and 1478 seconds.

one is graph representing the organizational structure of a
large company, with about 270000 nodes. For the binary tree,
sfdp took 323 seconds, while MARS took 588 seconds. For
the org chart, sfdp took 194 seconds, while MARS took 1915
seconds. The contrast between these two examples is show
one advantage of stress majorization. Since it uses an under-
lying metric space to take into account interactions between
every pair of vertices (regardless of whether an edge con-
nects them), it can give a more global picture of the graph
structure. While the layouts produced by sfdp appear more
aesthetically pleasing, we call attention to the similarity be-
tween the two layouts generated by sfdp for the trees. In our
opinion this is a major disadvantage of the method: if two
graphs have a significantly different structure, they should
get significantly different drawings. To the best of our knowl-
edge, MARS satisfies this requirement better than any other
published algorithm for sufficiently large graphs.

Finally, we show a graph of a crawl of the University
of Notre Dame’s web site, NotreDame_www, with 325000
nodes. Every web page is a node on this graph, and there is an
edge between nodes iff there is a hyperlink that connects them.
These low-diameter, highly connected graphs are known to be
challenging to draw, and although sfdp succeeds in findings
some well-isolated subgraphs, the main set of nodes appears
hopelessly entangled. For this graph, sfdp took 865 seconds,
while MARS took 1478 seconds. In the drawing produced
by MARS, on the other hand, the isolated isles get pushed
out to the periphery and lose their shape, but the main set
of nodes appears better separated, and some coherent sets of
links between clusters seem to appear. We show some more
results of our algorithm in Figure 9.

6. Discussion and Future Work

Although there have been attempts at solving the stress model
in a scalable way, we believe our algorithm has some unique
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Figure 9: Some more layouts of MARS. Top left, lux-
embourg_osm (|V | = 114599, 543s); top right, fi-
nance256 (|V |= 37376, 151.9s); bottom left, ncvxbqp1
(largest connected component: |V |= 40000, 203s); bottom
right, ncvxqp9 (|V |= 16554, 66.7s). k = 100.

advantages. Previous attempts have, for example, simplified
the full stress matrix by assuming large blocks of the matrix
are constant (via a quadtree decomposition such as the one
from Chalmers [Cha96]), or by assuming large portions of
the matrix are zero, such as PivotMDS [BP07] and sparse
stress formulations [BP09]. MARS, on the other hand, uses a
formulation for the stress matrix where every element of the
matrix is equally perturbed by the low-rank approximation.
Our algorithm does not explicitly store every entry of the
matrix Lω for performance reasons, but it behaves exactly as
if it did. This is the crux of our insight: instead of looking for
sparsifiers of the stress matrices whose approximation is all-
or-nothing (either exact values or zero), we look for low-rank
representations, whose approximation error is roughly evenly
distributed along the matrix entries.

In addition, it is well-known [GKN04] that metric MDS
(stress majorization) yields better results than classical MDS.
Since our algorithm approximates the former, we can expect
it to generate better results than those which approximate the
latter, like PivotMDS.

Furthermore, the choice of wi j = d−1
i j gives a fortuitous

cancellation on the expression LX X . In essence, this choice
lets us implicitly use all di j elements without accessing any
of them. Without this cancellation, all the values of the APSP
matrix need to be computed, and sparsifying this matrix ap-
pears to lead to the known problem suffered by PivotMDS
and HDE, where multiple vertices are projected to the same
location. Our algorithm balances these two requirements. It ef-
ficiently and accurately computes the expression LX X , which
at present requires choosing wi j = d−1

i j , and it computes the

pseudo-inverse of the left-hand side matrix Lω without ac-
cessing or computing most entries of the APSP matrix.

Generally speaking, MARS appears to generate “radial”
layouts at times. We speculate that this is due to the underly-
ing metric being projected into R2: nothing in the algorithm
forces the layouts to be radial. This phenomenon might arise
partly from the fact that most large graphs that are challeng-
ing to draw (and hence are the ones we picked to showcase
MARS) are highly-connected and low-diameter. While we
cannot rule out the possibility that the unconventional weight
choice causes a radial layout (at the time of writing, no al-
gorithm can handle other weight choices but wi j = d−1

i j in
large graphs), we note that the radial layout does not appear
in all cases (see Figure 9), and that at least one other author
has experimented with different weight assignments and this
phenomenon is not visible there [Coh97].

One interesting avenue for future work is in metric engi-
neering. One major advantage of stress majorization is that
it is completely agnostic to the metric used in the original
dataset. In most published work (and here as well), we restrict
ourselves to the shortest-path graph metric. However, this met-
ric has problems: one stray edge can “shortcut” potentially
many node-to-node paths, and change the metric significantly.
We intend to investigate the use of commute-time distances
(roughly the time it takes for a random walk to go between
two vertices) and stress majorization, as these metrics are
more robust to such shortcuts. Along the same lines, pick-
ing an optimal value of k for the speed-accuracy tradeoff is
equivalent to choosing a metric that is sufficiently accurate
and easy to compute. Although we believe that our choices
are reasonable, we leave a full experimental study for future
work. We point out that our algorithm might be applicable
to find a metric embedding for more general dimensionality
reduction situations. In this case, the approximation of LX X
becomes exponentially slower as the embedding dimension
increases (the well-known curse of dimensionality). We are
currently investigating the use of alternative data structures
that might help circumventing some of these issues. In addi-
tion, these data structures might help solving the case where
wi j = d−2

i j , which despite being the most popular choice in
the literature, cannot be applied directly in our setting.

In this paper, we have demonstrated the feasibility of stress
majorization for large graphs. Although the resulting layouts
we obtain are approximate, we believe our technique opens
the field for new investigations on drawing graphs that are
currently believed to be too hard to draw.
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