
Visualizing large graphs

Yifan Hu1 and Lei Shi2

1 Yahoo Labs, 111 W 40th St, New York, NY 10018, USA. yifanhu@yahoo.com
2 SKLCS, Institute of Software, Chinese Academy of Sciences, China.

shil@ios.ac.cn

Abstract. With the prevailence of big data, there is a growing need for
algorithms and techniques for visualizing very large and complex graphs.
In this article we review layout algorithms and interactive exploration
techniques for large graphs. In addition we briefly look at softwares and
datasets for visualization graphs, as well as challenges that need to be
addressed.

1 Introduction

A graph is a mathematical notation describing relations among items. In this use,
a node of the graph represents an item, and an edge exists between two nodes if
the two corresponding items are related. Consider the following social network
{Farid–Aadil, Latif–Aadil, Farid–Latif, Carol–Andre, Carol–Fernando, Carol–Diane,

Andre–Diane, Farid–Izdihar, Andre–Fernando, Izdihar–Mawsil, Andre–Beverly, Jane–

Farid, Fernando–Diane, Fernando–Garth, Fernando–Heather, Diane–Beverly, Diane–

Garth, Diane–Ed, Beverly–Garth, Beverly–Ed, Garth–Ed, Garth–Heather, Jane–Aadil,

Heather–Jane, Mawsil–Latif}. This social network tells us that “Farid” is a friend
of “Aadil”, “Latif” is a friend of “Aadil”, and so on. However, staring at this
mathematical notation of the social network for a moment, most of us may fail
to find any structure in this social network. On the other hand, Fig. 1 shows
a visualization of this graph. Immediately we can see that this graph has two
clusters, and “Jane” and “Heather” are the two persons that connect these two
social clusters together. This example illustrates that visualization of graphs can
give us an overall sense of the data. It helps us find structures, locate anomalies,
and formulate questions that can in turn be answered through interaction with
the visualization and the underlining data.

In this article we look at algorithms and techniques for visualizing large
graphs. For laying out large graphs, the scalability of the algorithm becomes very
important, so is the ability of the algorithm in escaping from local minimum and
achieving a globally optimal drawing. In addition, for visual exploration, it is cru-
cial to reduce the complexity of the visual representation, using abstraction and
compression techniques. Throughout the article we shall limit our attention to
straight edge drawing of undirected graphs, mostly because scalable algorithms
for these are more readily available. Our emphasis is on layout algorithms and
interactive exploration techniques. Due to space limitation, no attempt is made
to give a comprehensive review of the literature and history, nor of software and
visualization systems. For further readings, the users are referred to [10,65,93].

Farid

AadilLatif

Izdihar

Carol

AndreFernando

Diane

BeverlyGarth

Heather

Ed

Mawsil Jane

Fig. 1. Visualization of a small social network.

2 A Brief History

From the mid-20th century, due to demands from the military, transportation
and communication industries, a growing number of graph problems, as well as
the need to visualize graphs, have emerged. Given that drawing a small graph
by hand is time-consuming, and medium to large graphs impossible, automatic
generation of graph drawings became of interest, and were made possible by the
increasing computing power.

In 1963, Tutte [97] proposed an algorithm to draw planar graphs by fixing the
nodes on a face and placing the rest of the nodes at the barycenters of their neigh-
bors. In 1984, Eades [25] proposed for the first time the spring-electrical model,
and the force-directed solution framework, which was subsequently improved
by Fruchterman and Reingold in 1991 [30]. Around the same time, Kamada
and Kawai [61] proposed the stress model. The Fruchterman and Reingold force
directed algorithm was extended to work on large graphs [12,44,56,84,96,104]
through the multilevel (also known as multiscale) approach and fast force ap-
proximation techniques, and the convergence of the spring model was also im-
proved by multilevel techniques [31,48].

For the remainder of this article we look at these and more recent algorithms,
with emphasis on algorithms and techniques for visualizing large networks. The
term large is relative to the computing power and memory available. In this
paper, by large, we mean graphs of more than a few thousand vertices. Such
large graphs occur in areas such as Internet mapping, social networks, biological
pathways and genealogy. Large networks bring unique challenges in terms of
scalability of the algorithm, and ability to find a globally optimal drawing.

Even with the most scalable and robust algorithm, not all graph can be
aesthetically drawn in two or three-dimensional spaces. For example, many In-
ternet graphs are of “small-world” nature [108]. Such graphs are difficult to
layout in Euclidean space, and often require an interactive system to compre-
hend and explore. The size and complexity of such graphs necessitate techniques
to simplify the visual representation. Such techniques include visual abstrac-
tion [37,85], compression [22,24,89], fisheye-like distortion and hyperbolic layout
[37,53,69,77,76]. These topics are also discussed.

3 Algorithms for Large Graph Layout

An undirected graph G consists of a set of nodes (vertices) V , and a set of edges
E, which are tuples of nodes. Denote by |V | and |E| the number of vertices
and edges, respectively. If vertices i and j form an edge, we denote that i ↔ j,
and call i and j neighboring vertices. Throughout the paper we use the terms
network and graph interchangably.

A graph is traditionally visualized as a node-link diagram like Fig. 1. To get
this diagram, we must assign a location to each node. This process is known as
graph layout. We denote by xi the location of vertex i in the layout. Here xi is
in d-dimensional Euclidean space. Typically d = 2 or 3.

The aim of laying out a graph (assigning a position to each node) is so that
the resulting drawing gives an aesthetic visual representation of the connectivity
information among vertices.

The most widely used techniques turn the problem of graph layout into one
of finding a minimal energy configuration of a physical system. The two most
popular methods in this category are the spring-electrical model [25,30], and the
stress model [61].

We first introduce the spring-electrical model, and the multilevel approach
and force approximation techniques that make this model feasible for large
graphs. We note that the multilevel approach is not limited to the spring-
electrical model. For convenience, we introduce it in the context of this model.
We then discuss the stress model and the classical MDS algorithm (the strain
model), and review recent efforts in making these models scalable. Finally we
present the high-dimensional embedding and spectral algorithms. These two al-
gorithms, though very fast, often do not give good drawings for real world graphs,
and are included here for completeness.

3.1 Spring-electrical Model

The spring-electrical model was first introduced by Peter Eades in 1984 [25]. In
this short paper, he wrote: “To embed a graph we replace the vertices by steel
rings and replace each edge with a spring to form a mechanical system. The
vertices are placed in some initial layout and let go so that the spring forces on
the rings move the system to a minimal energy state... we make nonadjacent
vertices repel each other...” This intuitive idea marks the conception of the
spring-electrical model, as well as the force-directed solution framework now
widely used for solving this and other virtual physical models.

Eades initially suggested to use logarithmic strength springs, and made the
repulsive force inversely proportional to the distance for non-adjacent vertices.
Later, Fruchterman and Reingold [30] modified the force formulae, so that the
attractive spring force exerted on vertex i from its neighbor j is proportional to
the squared distance between these two vertices,

Fa(i, j) = −‖xi − xj‖
2

K

xi − xj
‖xi − xj‖

, i↔ j, (1)

where K is a parameter related to the nominal edge length of the final layout.
The repulsive electrical force exerted on vertex i from any vertex j is inversely
proportional to the distance between these two vertices,

Fr(i, j) =
K2

‖xi − xj‖
xi − xj
‖xi − xj‖

, i 6= j. (2)

The energy of this physical system [79] is

E(x) =
∑
i↔j

‖xi − xj‖3/(3K)−
∑
i 6=j

K2 ln (‖xi − xj‖) ,

with its derivatives a combination of the attractive and repulsive forces.

The spring-electrical model can be solved with a force-directed procedure by
starting from an initial (e.g., random) layout, calculating the combined attractive
and repulsive forces on each vertex, and moving the vertices along the direction
of the force for a certain step length. This process is repeated, with the step
length decreasing every iteration, until the layout stabilizes. This procedure is
formally stated in Algorithm 1.

Algorithm 1 ForceDirectedAlgorithm(G, x, tol,K)

1 input: graph G = {V,E}, initial positions x, tolerance tol, and nominal edge length K
2 set step = initial step length
3 repeat
4 x0 = x
5 for (i ∈ V) {
6 f = 0 // f is a 2/3D vector
7 for (j ↔ i, j ∈ V) f ← f + Fa(i, j) // attractive force, see equation (1)
8 for (j 6= i, j ∈ V) f ← f + Fr(i, j) // repulsive force, see equation (2)
9 xi ← xi + step ∗ (f/||f ||) // update position of vertex i

10 }
11 until (||x− x0|| < tol ∗K)
12 return x

This procedure can be enhanced by an adaptive step length updating scheme
[14,56]. It usually works well for small graphs. For large graphs, this simple iter-
ative procedure is prone to be trapped in one of the many local energy minima
that exists in the space of all possible layouts. Instead, a multilevel approach
can be be used to prevent local optima. Furthermore, force approximation tech-
niques, often based on space decomposition schemes, can efficiently calculate the
all-to-all electrical force so as to reduce the computational complexity from |V |2
to O(|V | log |V |+ |E|).

Fast force approximation Each iteration of the force-directed algorithm (Al-
gorithm 1) involves two loops. The outer loop iterates (lines 5-10) over each of
the |V | vertices. Of the two inner loops (lines 7 and 8), the latter involves calcu-
lation of |V | − 1 repulsive forces. Thus the outer and inner loops together have
an overall computational complexity of O(|V |2).

Fruchterman and Reingold [30] proposed to reduce the complexity by parti-
tioning the space into grid cells, and only calculated repulsive forces for vertices
in neighboring grid cells. This however ignores far away nodes and can introduce
large errors. A better approach is to use a technique widely known in simulation
of the n-body problem in physics. This technique, proposed by Barnes & Hut [8],
approximates the repulsive forces inO(n log n) time with good accuracy, but does
so without ignoring long range forces. It works by treating groups of far away
vertices as supernodes, using a nested space decomposing data structure. This
idea was adopted by Tunkelang [96] and Quigley [84]. They both used a quadtree
(or octree in 3D) data structure.

A quadtree forms a recursive grouping of vertices (Figure 2 (a)), and can be
used to efficiently approximate the repulsive force. When calculating the repul-
sive force on a vertex i, if a group of vertices, S, lies in a square that is sufficiently
“far” from i, the whole group can be treated as a supernode. Otherwise we tra-
verse down the tree and examine the four sibling squares. Figure 2 (right) shows
all the supernodes (the squares) and the vertices these supernodes consist of,
with reference to vertex i located at the top-middle part of the graph. In this
case there are 936 vertices, and 32 supernodes.

Fig. 2. An illustration of the quadtree data structure. Left: the overall quadtree. Right:
supernodes with reference to a vertex at the top middle part of the graph, with θ = 1.

Under a reasonable assumption [8,83] of the distribution of vertex posi-
tions, it can be proved that building the quadtree takes a time complexity of
O(|V | log |V |). Finding all the supernodes with reference to a vertex i can be
done in a time complexity of O(log|V |). Overall, using a quadtree structure to
approximate the repulsive force, the complexity for each iteration of the force-
directed Algorithm 1 is reduced from O(|V |2) to O(|V | log |V |). This force ap-

proximation scheme can be further improved by considering force approximation
at supernode-supernode level instead of vertex-supernode level [15].

The multipole method [42] is another force approximation algorithm with
the same O(|V | log |V |) complexity, but it achieves this complexity independent
of the distribution of vertex positions. It also relies on a quad-tree space decom-
position. Hachul and Jünger applied this force approximation to graph drawing
[44] in the FM3 code.

Multilevel approach While fast approximation of long range forces resolves
the quadratic complexity for the repulsive force calculation, the force-directed al-
gorithm uses the steepest decent process and re-positions one vertex at a time to
minimize the energy locally. Due to the fact that this physical system of springs
and electrical charges can have many local minimum configurations, applying
the force-directed algorithm to a random initial layout is unlikely to yield a
global optimal final layout. A multilevel approach can overcome this limitation.
In this approach, a sequence of smaller and smaller graphs are generated from
the original graph, each captures the essential connectivity information of its
parent. Global optimal layout can be found much more easily on small graphs.
A good layout for a coarser graph is thus always used as a starting layout for its
parent. From this initial layout, further refinement is carried out to achieve the
optimal layout of the parent.

Multilevel approaches have been used in many large-scale combinatorial op-
timization problems, such as graph partitioning [43,51,106], matrix ordering
[57,86], the traveling salesman problem [103], and were proved to be a useful
meta-heuristic tool [105]. They were later used in graph drawing algorithms
[31,45,48,104], sometimes under the name “multiscale”. Note that a multilevel
approach is not limited to the spring-electrical model, but for convenience we
are introducing it in the context of this model.

A multilevel approach has three distinctive phases: coarsening, coarsest graph
layout, and prolongation and refinement. In the coarsening phase, a series of
coarser and coarser graphs, G0 = G,G1, . . . , Gl, are generated, each coarser
graph Gk+1 encapsulates the information needed to layout its parent Gk, while
containing fewer vertices and edges. The coarsening continues until a graph with
only a small number of vertices is reached. The optimal layout for the coarsest
graph can be found cheaply. The layouts on the coarser graphs are recursively
prolonged to the finer graphs, with further refinement at each level.

Graph coarsening and initial layout is the first phase in the multilevel
approach. There are a number of ways to coarsen an undirected graph. One
often used method is based on edge collapsing (EC) [43,51,106]. In this scheme,
a maximal independent edge set (MIES) is selected. This is a maximal set of
edges, with no edges incident to the same vertex. The vertices corresponding to
this edge set form a maximal matching. Each edge, and its corresponding pair
of vertices, are coalesced into a new vertex. Figure 3 illustrates MIES and the
result of coarsening using edge collapsing.

→

Fig. 3. An illustration of the edge collapsing based graph coarsening. Left: original
graph with 85 vertices. Edges in a maximal independent edge set are thickened. Right:
a coarser graph with 43 vertices resulted from coalescing thickened edges.

Alternatively, coarsening can be performed based on a maximal independent
vertex set (MIVS) [7]. This is a maximal set of vertices such that no two vertices
in the set are connected by an edge in the graph. Edges of the coarser graph are
formed through linking two vertices in the maximal independent vertex set by an
edge if their distance apart is no greater than three. This coarsening strategy is
also known as filtering [31], and was applied to distance based embedding. Bartel
et al. [9] conducted an experimental study, comparing many different strategies
for coarsening, as well as components for other phases of the multilevel process.

Coarsest graph layout is carried out at the end of the recursive coarsening
process. Coarsening is performed repeatedly until the graph is very small; at
that point we can layout the graph using a suitable algorithm, for example, the
force-directed Algorithm 1. Because the graph on the coarsest level is very small,
it is likely that it can be laid out optimally.

The prolongation and refinement step is the third phase in a multilevel
procedure. The layout on the coarser graphs are recursively interpolated to the
finer graphs, with further refinement at each level. Because the initial layout on
each level is derived from a good layout on the coarser level, it is much more
likely that a globally optimal layout can be achieved.

Row “spring electrical” of Figure 4 shows drawings of two graphs using this
multilevel force-directed algorithm [56]. The drawings are of good quality for
both dw256A, a mesh-like graph, and qh882, a sparser graph.

Robust coarsening: while the coarsening schemes based on maximal indepen-
dent edge or vertex sets work well for many graphs, for some real world graphs,
these schemes are not suitable. One requirement for a good coarsening scheme
is that the coarsening should reduce the vertex/edge size of the graph by no less
than a constant factor. A typical graph that creates a problem for the standard
coarsening schemes is the following. This graph has a few high degree nodes,
and many other nodes randomly connected to one or a few of the high degree
nodes. Such a graph is an extension of the star-graph, and is often seen in social
networks, where high degree vertices are celebrities, and low degree vertices are
followers. This types of graphs pose a challenge for a coarsening scheme based
on edges collapsing, because a randomly select edge is likely to be connected
to one of the high degree nodes, thus prevents all the edges connected to that

Algorithms dw256A qh882

spring electrical

stress

classical MDS

Pivot MDS

HDE

Hall’s

Fig. 4. Result of some of the algorithms applied to two graphs, dw256A and qh882.

high degree node from being chosen for collapsing. As a result the maximal in-
dependent edge set only contains very few edges, and coarsening based on MIES
barely reduces the size of the graph.

One solution proposed in [19] is to find vertices that share the same neighbors,
known as structural equivalent vertices. On a social network these vertices are
people who share the same, or very similar, friends. These vertices are matched
in pairs. The standard MIES scheme is then used to match the remaining un-
matched vertices. Finally the matched vertices are merged to get the coarsened
graph. This scheme is able to overcome the slow coarsening problem associated
with graphs having star-graph likes sub-structures.

By combining the aforementioned fast force calculation techniques and the
multilevel approaches, efficient implementations [44,56] of the spring-electrical
model are capable of handling graphs of millions of vertices and edges [55].
Figure 5 gives some examples using such an implementation.

Fig. 5. Example drawings of large graphs

3.2 Stress and Strain Models

In many real life applications, edges of a graph often have quantitative informa-
tion associated. For example, vertices are connected if the objects they represent

are similar, and each edge has a similarity measure attached. It is useful to lay-
out such graphs so that the edge lengths reflect this information. While the
spring-electrical model can be made scalable, it does have the limitation of not
encoding edge length explicitly in the model. It is possible to assign weaker at-
tractive force and stronger repulsive force for longer edges, but such treatment
is not as principled as the following stress model.

Stress model The stress model assumes that there are springs connecting all
pairs of vertices in the graph, with the ideal spring length equal to the predefined
edge length. The stress energy of this spring system is∑

i 6=j

wij (‖xi − xj‖ − dij) 2, (3)

where dij is the ideal distance between vertices i and j. The layout that minimizes
the above stress energy is an optimal layout of the graph according to this
model. In the stress model wij is a weight factor. A typical choice is wij = 1/dij

2.
With this choice, (3) can be written as

∑
i 6=j (‖xi − xj‖/dij − 1) 2, thus this

stress energy measures the relative difference between the actual edge length and
ideal edge length. If wij = 1/dij, the resulting embedding is known as Sammon
Mapping.

The stress model has its root in Multidimensional Scaling (MDS) [66,67], and
the term MDS is sometimes used to describe the embedding process based on
the stress model. Note that in graph drawing, only the lengths of the edges are
known. If they are not given, then we assume that they equal to one (alterna-
tively, Gansner et al. [38] proposed to set the edge length to the total number of
non-common neighbors of the two end vertices). For non-adjacent vertex pairs i
and j, typically dij is defined as the shortest path distance between them. This
practice dates back at least to 1980 in social network layout [13], and in graph
drawing using classical MDS[67], even though it is often attributed to Kamada
and Kawai [61] in the graph drawing literature.

There are several ways to minimize (3). Kamada and Kwai [61] proposed to
minimize the energy function (3) by using Newton’s method on the coordinates
related to one vertex at a time. In recent years stress majorization technique [38]
became a preferred way to minimize the stress model due to its robustness.

Stress-majorization [38]: consider the expanded form of the stress en-
ergy (3),

stress(x) =
∑
i6=j

(
wij‖xi − xj‖2 − 2dijwij‖xi − xj‖+ wijdij

2
)

Using the Cauchy-Schwartz inequality, the cost function is bounded by

stress(x) ≤ g(x, y) =
∑
i 6=j

(
wij‖xi − xj‖2 − 2dijwij

(xi − xj) T (yi − yj)
‖yi − yj‖

+ wijdij
2

)
,

with the bound tight when y = x. The idea of stress majorization is to minimize
a sequence of quadratic functions g

(
x, yk

)
with regard to x. Here yk is the result

of minimizing g
(
x, yk−1

)
, k = 1, 2, Initially y0 = x0.

The minimum of the quadratic function g(x, y) with regard to x, derived by
setting ∂xi

g(x, y) = 0, is computed as

Lwx = Lw,d y (4)

where the weighted Laplacian matrix Lw is positive semi-definite and has ele-
ments

(Lw)ij =

{∑
l 6=i wil, i = j

−wij, i 6= j
(5)

and the right-hand-side Lw,d y has elements

(Lw,d y)i =
∑
l 6=i

wil dil(yi − yl)/ ‖yi − yl‖ . (6)

In summary, the process of finding a minima of (3) becomes that of solving a
series of linear systems (4), with the solution x served as y in the next itera-
tion. This iterative process was found to be more robust than the Kamada and
Kwai algorithm [61], although it still benefits from a good initial layout. Row
“stress” of Figure 4 gives drawings given by the stress majorization algorithm.
It performed very well on both graphs.

On large graphs, the stress model (3) is not scalable. Formulating the model
requires computing the all-pairs shortest path distances, and a quadratic amount
of memory to store the distance matrix. Furthermore the solution process have
a computational complexity at least quadratic to the number of nodes. In recent
years there have been attempts at developing more scalable ways of drawing
graphs that still satisfy the user specified edge length as much as possible. We
will discuss some of these after we introduce the strain model.

Strain model (classical MDS) The strain model, also known as classical MDS
[94], predates the stress model. Classical MDS tries to fit the inner product of
positions, instead of the distance between points. Specifically, assume that the
final embedding is centered around the origin. Furthermore, assume that in the
ideal case, the embedding fits the ideal distance exactly: ‖xi − xj‖ = dij . It is
then easy to prove [109] that the product of the positions, xTi xj , can be expressed
as the squared and double centered distance,

xTi xj = −1/2

d2ij − 1

|V |

|V |∑
k=1

d2kj −
1

|V |

|V |∑
k=1

d2ik +
1

|V |2

|V |∑
k=1

|V |∑
l=1

d2kl

 = bij . (7)

In real data, it is unlikely that we can find an embedding that fits the dis-
tances perfectly, but we would still expect bij to be a good approximation of

xTi xj . Therefore we try to find an embedding that minimizes the difference be-
tween the two,

min
X
||XTX −B||F , (8)

where X is the |V | × d dimensional matrix of xi’s, B is the |V | × |V | symmetric
matrix of bij ’s, and ||.||F is the Frobenius norm. Denote the eigen-decomposition

of B as B = QTΛQ, then the solution to (8) becomes X = Λ
1/2
d Q, where Λd is

the diagonal matrix of Λ, with all but the d-largest eigenvalues on the diagonal
set to zero. In other words, strain model works by finding the top d eigenvectors
of B, and uses that, scaled by the eigenvalues, as the coordinates. Because the
strain model does not fit the distance directly, edge length in the layout may
not fit the length specified by the user as well as the stress model. Nevertheless
layout from the strain model can be used as a good starting point for the stress
model. Row “classical MDS” of Figure 4 gives drawings using classical MDS.
It performed better on the mesh-like dw256A graph than on the sparser qh882

graph. On the latter it gives a drawing with many vertices close to each other,
making details of the graph unclear, even though it captures the overall structure
well.

MDS for large graphs In the stress model (as well as the strain model),
the graph distances between all pairs of vertices have to be calculated, which
necessitates an all-pairs shortest path calculation. Using Johnson’s algorithm,
this needs O(|V |2 log |V |+ |V ||E|) computation time, and a storage of O(|V |2).
Solution of the dense linear systems takes even longer time than the formation of
the distance matrix. Therefore for very large graphs, the stress model is compu-
tationally expensive and memory prohibitive. A number of attempts have been
made to approximately minimize the stress energy or to solve the strain model.

The multiscale algorithm of Hadany and Harel [45] improved the Ka-
mada and Kwai [61] solution process by speeding up its convergence, Harel and
Koren[49] improved that further by coarsening with k-centers. A multiscale al-
gorithm of Gajer et al. [31] applies the multilevel approach in solving the stress
model. In the GRIP algorithm [31], graph coarsening is carried out through ver-
tex filtration, an idea similar to the process of finding a maximal independent
vertex set. A sequence of vertex sets, V 0 = V ⊂ V 1 ⊂ V 2, . . . ,⊂ VL, is gener-
ated. However, coarser graphs are not constructed explicitly. Instead, a vertex
set V k at level k of the vertex set hierarchy is constructed so that distance be-
tween vertices is at least 2k−1 + 1. On each level k, the stress model is solved
by a force-directed procedure. The spring force on each vertex i ∈ V k is cal-
culated by considering a neighborhood Nk(i) of this vertex, with Nk(i) the set
of vertices in level k – chosen so that the total number of vertices in this set
is O(|E|/|V k|). Thus the force calculation on each level can be done in time
O(|E|). It was proved that with this multilevel procedure and the localized force
calculation algorithm, for a graph of bounded degree, the algorithm has close to
linear computational and memory complexity. However in the actual implemen-

tation, at the finest level, GRIP reverts back to the spring-electrical model of
Fruchterman and Reingold [30], making it difficult to assess whether GRIP can
indeed solve the stress model well.

LandmarkMDS [20] approximates the result of the classical MDS by choos-
ing k << |V | vertices as landmarks, and calculating a layout of these vertices
using the classical MDS, based on distances among these vertices. The posi-
tions for the rest of vertices are then calculated by placing them at the weighted
barycenter, with weights based on distances to the landmarks. So essentially
classical MDS is applied to a k × k submatrix of the |V | × |V | matrix B. The
complexity of this algorithm is O(k|E| + k2), and only O(k|V |) distances need
to be stored.

PivotMDS [12], on the other hand, takes a |V | × k submatrix C of B.
It then uses the eigenvectors of CCT as an approximation to those of B. The
eigenvectors of CCT is found via those of the k×k matrix CTC. By an algebraic
argument, if v is an eigenvector of CTC, then

CCT (Cv) = C(CTCv) = λ(Cv),

hence Cv is an eigenvector of CCT . Therefore PivotMDS proceeds by finding the
largest eigenvectors of this smaller k×k matrix CTC, then projects back to |V |-
dimensional space by multiplying them with C. It uses these projected eigenvec-
tors, scaled by the inverse of the quartic root of the eigenvalues, as coordinates.
Using this technique, the overall complexity is similar to LandmarkMDS, but
unlike LandmarkMDS, PivotMDS utilizes distances between landmark vertices
(called pivots) and all vertices in forming the C matrix. In practice, PivotMDS
was found to give drawings that are closer to the classical MDS than Land-
markMDS. It is extremely fast when used with a small number (e.g., k ≈ 50) of
pivots.

It is worth pointing out that, for sparse graphs, there is a limitation in both
algorithms. For example, if the graph is a tree, and pivots/landmarks are chosen
to be non-leaves, then two leaf nodes that have the same parent will have ex-
actly the same distances to any of the pivots/landmarks, consequently their final
positions based on these algorithms will also be the same. This problem may be
alleviated to some extent by utilizing the layout given by these algorithms as an
initial placement for a sparse stress model [13,38].

The MaxEnt algorithm [36] is based on the following argument. The user
only specifies the length of edges. The stress model (3) assumes that the unknown
distance between non-neighboring vertices should be the shortest graph-theoretic
distance. This is reasonable, but does add artificial information that is not given
in the input. In addition, calculating all-pairs shortest distances for large graphs
is costly anyway. On the other hand, specifying only the length of edges leaves
too many degrees of freedom in possible node placement. A reasonable yet effi-
cient way to satisfy these degrees of freedom is thus needed. MaxEnt proposed
to resolve the extra degrees of freedom in the node placement by maximizing
a notion of entropy that is maximized when vertices are uniformly spread-out,
subject to the edge length constrains. In the final implementation, MaxEnt min-

imized the following sparse stress function defined on the edges, together with a
penalty term that helps to spread out vertices:

min
∑
{i,j}∈E

wij (‖xi − xj‖ − dij)2 − α
∑
{i,j}/∈E

ln ‖xi − xj‖ . (9)

It turns out that a solution technique similar to stress-majorization can be em-
ployed, which involves solving repeatedly

Lwx = Lw,d x+ α b(x),

except that the matrices involved are all sparse, and there is an additional term
b(x) which is a sum of repulsive forces among non-neighboring vertices, and
can be approximated efficiently using the fast force approximation technique
discussed earlier. MaxEnt was found to be more efficient than the full stress
model. Although it is not as fast as PivotMDS, MaxEnt does not suffer from the
same limitation as PivotMDS on sparse graphs.

The MARS algorithm [62] attempts to approximate the full stress model. The
full stress model is not scalable because of the need for the all-pairs shortest
paths calculation. In addition, the dense Laplacian matrix (5) involved also
make the memory requirement quadratic to the number of vertices. The idea
of MARS is that although this Laplacian typically has slow decaying eigenval-
ues, when the diagonal part is zeroed-out, the off-diagonal matrix often has a
quick decaying eigen-distribution, thus can be approximated well by dropping
most of the smaller eigenvalues and approximating by a low rank singular-value
decomposition (SVD). To avoid using every entry of the matrix to form the ap-
proximation, MARS utilized a result of Drineas et al. [21], which states that the
extreme singular values and vectors of a matrix with quick decaying eigenvalues
can be approximates well by the singular values and left singular vectors of a
|V |×k matrix. Columns of the matrix are sampled from the original matrix with
a probability proportional to the norm of the columns. This sampling technique
works well in the context of the Laplacian (5), because computing a column of
that matrix only requires a single-source shortest paths calculation. Thus getting
k-columns requires only k applications of Dijstra’s algorithm, with a complexity
of O(k(|E|+ |V | log |V |)).

Once the SVD approximation for the off-diagonal matrix is formed, some
algebraic manipulation is required to use this approximation to solve the linear
system via pseudo-inverse. An additional challenge is that the right-hand-side
of (4), shown in details in (6), also involved shortest path distances for all pairs of
vertices. Fortunately, when wij = 1/dij , the product wijdij is 1, and equation (6)
becomes a sum of unit vectors pointing from all other vertices to vertex i. This
can be approximated well using the fast force approximation techniques discussed
earlier.

COAST [35] reformulates the stress model into two parts so that fast convex
optimization techniques can be applied. The energy function it minimizes is

min
∑
{i,j}∈E

wij

(
‖xi − xj‖2 − d2ij

)2
− α

∑
{i,j}/∈E

‖xi − xj‖2 . (10)

This model is somewhat comparable to that of MaxEnt (equation (9)), in that
the first part sums over the edges and the second part over non-neighboring
vertices. The main difference is that COAST added a square to the two terms
in the first part, and made the second part quadratic. This made the energy
function quartic. When this function is expanded, all non-constant terms are of
the form xTi xj . Defining these as new artificial variables, the energy function
can be converted to a quadratic function of the |V |2 new variables, subject
to the constraint that these artificial variables sit in a semi-definite cone. The
complexity can be reduced further if we assume that xi can be expressed as
a linear combination of the smaller eigenvectors of the Laplacian, a reasonable
assumption because positions of vertices that are closely connected should be
smoothly varying. In the end, COAST solves a convex optimization problem
with a small number of variables, and is comparable in speed to MaxEnt.

3.3 High-Dimensional Embedding

The high-dimensional embedding (HDE) algorithm [50] finds coordinates of ver-
tices in a k-dimensional space, then projects back to two or three dimensional
space.

First, a k-dimensional coordinate system is created based on k-centers, where
the k-centers are chosen as in LandmarkMDS/PivotMDS. The graph distances
from each vertex to the k-centers form a k-dimensional coordinate system. The
|V | coordinate vectors form an |V | × k matrix Y , where the i-th row of Y is the
k-dimensional coordinates for vertex i. The dimension of this coordinate system
is then reduced from k to d (d = 2 or 3) by principal component analysis, which
finds d largest eigenvectors vi of Y TY (Y is first normalized so that the sum of
each column is zero), and uses Y vi as the coordinates of the final embedding.

Clearly, HDE has many commonalities to PivotMDS. Each utilizes k-centers,
and each finds the largest eigenvectors of a k× k dimensional matrix derived by
multiplying the transpose of a |V | × k matrix with itself. The main difference
is that in high-dimensional embedding this |V | × k matrix consists of distances
to the k-centers, while in PivotMDS this matrix consists of distances squared
and double centered (see (7)). Due to its reliance on distances fro the k-centers,
high-dimensional embedding may suffer from the same issue as PivotMDS and
LandmarkMDS on sparse graphs. In practice it tends to do worse than PivotMDS
on such graphs. Row “HDE” of Figure 4 gives drawings using HDE. It performs
particularly badly on qh882 graph, with vertices close to each other, obscuring
many details.

3.4 Algorithms Based on the Spectral Information of the Laplacian

In 1970, Hall [46] remarked that many sequencing and placement problems could
be characterized as finding locations of points which minimize the weighted sum
of square distances. In our notation, what he proposed was to minimize

∑
i↔j

wij ‖xi − xj‖2 , subject to

|V |∑
k=1

x2k = 1

where xi is the 1-dimensional coordinate value for vertex i. The objective func-
tion can be written as ∑

i↔j

wij ‖xi − xj‖2 = xTLwx,

with x = {x1, x2, ..., x|V |}. Here Lw is the weighted Laplacian matrix (5).
The solution x of the minimization problem is the eigenvector corresponding

to the smallest positive eigenvalue of the weighted Laplacian Lw. We can achieve
a 2-dimensional layout by taking the two eigenvectors corresponding to the two
smallest positive eigenvalues. Row “Hall’s” of Figure 4 gives drawings employing
Hall’s algorithm. It performed reasonably well on the mesh like dw256A graph,
but is close to useless on the sparser 1138 bus graph.

Koren et al. [64] proposed an extremely fast algorithm for calculating the two
extreme eigenvectors using a multilevel algorithm. The algorithm is called ACE
(Algebraic multigrid Computation of Eigenvectors). Using this algorithm, they
were able to layout graphs of millions of nodes in less than a minute. However,
the fundamental weakness of Hall’s algorithm on sparse graphs remains.

Table 6 summarizes most of the algorithms discussed in this section. Ex-
cept the full stress model and the classical MDS (strain model), all the other
algorithms can work on relatively large graphs.

4 Visual Abstraction of Large Graphs

As we have discussed so far, researchers made tremendous progress in scaling
classical drawing algorithms to large graphs. This allows, for the first time, users
to view a large graph with millions of nodes in a single picture. The users can
quickly match patterns and discover insights from large graph drawings, with
the help of the vast visual bandwidth and parallel processing capability of the
human eyes and brain. However, a full exploitation of human’s visual perception
power requires certain drawing aesthetics on the graph visualization [93], and
these aesthetics can be hard to satisfy when drawing large graphs. As the graph
size increases, edge crossings appear quickly and then node occlusion becomes
significant, hiding potential patterns that can be in existence.

We look at one important class of solution in this section, the graph abstrac-
tion methods. Generally, these methods apply graph simplification algorithms

Fig. 6. Algorithms discussed in this section and their complexity, quality, edge (whether
edge length is taken into account), and free software that implement the algorithms.
Rows are sorted by computational complexity and practical speed. Further details on
software are given in the “Software and Data Sets” section. Note that k is typically a
much smaller number than |V |, e.g., k = 50.

algorithm computational complexity quality edge software

Hall’s Algorithm a O(|E|) poor no -
HDE O(k|E|+ k2) poor no -
Landmark MDS O(k|E|+ k2) medium yes -
pivotMDS O(k2|V |+ k|E|+ k2) goodc yes [73]

spring electrical b O(|V |log|V |+ |E|)) good no [39,40,81]
MaxEnt O(|V |log|V |+ |E|) good yes -
MARS O(k3 + k(|V |log|V |+ |E|) + k2|V |) medium yes -
COAST (k2|v|+ k4|E|+ k4.5) good yes -
classical MDS O(|V |2 log |V |+ |V ||E|) medium yes -
(full) stress O(|V |2 log |V |+ |V ||E|) good yes [39,81]

a: with

a multilevel implementation [64]. b: with fast force approximation. c: except on graphs
with tree like sub-structures.

to reduce a large graph into smaller and simpler abstractions. The graph ab-
straction can be visualized by classical drawing algorithms. The layout normally
fits better to the graph aesthetics than that of the original large graph. These
abstractions are sometimes called the overview of large graphs. To access details
and local patterns of the large graph, navigation methods are introduced to in-
teractively explore graph abstractions. In this section, we also look at another
class of relevant methods which transform the graph view for visual simplicity,
normally without affecting the underlying graph topology.

4.1 Topology Compression

Fig. 7. Lossless compression a small network traffic graph [89].

The most straightforward method to simplify large graphs is to exploit the
redundancy in graph topology [89]. As shown in Figure 7, a small traffic graph
with 80 nodes can be compressed into a 9-node super graph without losing
topology information. The underlying algorithm involves the classical concept of
structural equivalence on graph [72]. Strictly, given a large graph G with adja-
cency matrix W = {wij}ni,j=1, the abstraction method by structural equivalence
groups the nodes with the same row vector together into a super node, where the
row vector for the ith node is Ri = {wij}nj=1. In the same approach, the directed
and weighted large graphs are compressed by extending the adjacency matrix
definition. With special treatments, cliques of nodes and fuzzy node groups can
be supported.

Several other literature have proposed to compress the large graph with simi-
lar ideas, such as PhraseNet [101], graph coarsening [19] and motif simplification
[22]. Specially in [22], Dunne and Shneiderman designed several visual glyphs to
encode fan, connector and clique patterns extracted from large graphs (Figure 8).
To further increase the compression rate over large graphs, more sophisticated
algorithms have been studied. Modular decomposition [82] is a method to de-
compose the graph into a module tree. The nodes in each module have the same
relationship to all the nodes outside the module. Power graph analysis [24] in-
troduced a further relaxation that allows the edges to cross module boundaries.

Fig. 8. Motif simplification of a network of wiki edits [22].

Though lossless compression of large graphs can be critical to understand the
details of the original graph, it is extremely difficult to achieve on real graphs
with small world nature. The compressed graph often retains a size comparable
to the original graph and is hard to draw in good aesthetics. In contrast, graph
clustering provides a general method to obtain a higher degree of compression
for large graphs. The graph clustering algorithms (aka community detection) are
well-studied in many research communities [27]. These algorithms depend on co-
hesive measures or criteria among graph nodes, such as the modularity [78] and
ratio association [47]. The visualization methods on the top often apply clus-

tering algorithms recursively to generate hierarchical abstraction of large graphs
[85,5,1,88]. Quigley and Eades proposed to use the geometric clustering to gener-
ate graph views with multiple levels of abstraction [85]. Lei et al. introduced the
modularity-based hierarchical graph clustering to visually summarize the large
graph within certain cluster depth [88]. Abello et al. designed Ask-GraphView
in an overview+detail approach [1]. The overall cluster hierarchy tree is com-
bined with a clustered view of the focused subgraph to allow exploration of the
entire large graph. The general steps for the node clustering based large graph
visualization is illustrated in Figure 9.

Cohesive Measures

Position-based Measures

K-Mean Clustering

Hierarchical Clustering

Spectral Clustering

Node Similarity Graph Clustering Clustered Graph Visualization

HiMap

SmallWorldGraphVis

ASK-GraphView

FADE

Fig. 9. Large graph visualizations through node clustering [85,5,1,88].

4.2 Semantic Abstraction

With the advent of the Internet and social media, many large graphs extracted
from the information network are rich in context. This context can be external-
ized as node/edge attributes in graph, such as user’s profile in a social graph and
paper’s venue in a citation graph. The semantic abstraction of graphs mainly
depends on these attributes to create a super graph to explain or complement
the original large graph visualization.

As one of the first proposal in this area, Wattenberg invented PivotGraph
[107] (Figure 10(a)). PivotGraph developed a few operations on multivariate
graphs. The primary roll-up operation pivots the graph nodes with the same
value on one or two attributes into node aggregations. These attributes can be
picked manually to generate different semantic abstractions. Combining these
operations and a grid-based 2D layout, PivotGraph supports powerful attribute-
centric analysis over large graphs. In OntoVis [87], Shen et al. proposed a method
to abstract heterogeneous social networks based on their ontology graph. For
attribute-based analysis, the graph can be filtered by selected nodes in the ontol-
ogy graph. On structural abstraction, OntoVis provides methods such as degree-
one node and duplicate path reductions.

Recently, OnionGraph was proposed to combine the advantage of both se-
mantic and topology abstraction of large graphs into the method of heteroge-
neous abstraction [90] (Figure 10(b)). At its core, a three-level graph hierarchy
is designed and interactively computed. The large graph is first compressed by
node attributes like the pivot operation while allowing dynamic abstraction of
different portions of the graph. This is the semantic abstraction layer. Second,
the semantic abstraction is expanded through the relative regular equivalence al-
gorithm by incorporating the neighborhood’s attribute information, which forms
the semantic+topology abstraction layer. Finally, the graph is further expanded
to aggregate by the exact neighborhood topology, which generates the pure topol-
ogy abstraction layer according to the structural equivalence concept. All three
layers can be explored by the well-designed focus+context interaction which also
supports multiple focuses on the abstraction.

Fig. 10. Semantic and heterogeneous abstraction of large graphs. Left: PivotGraph of
a communication network of people in a large company, x-axis is division, y-axis is
office geography [107]. Right: OnionGraph of a host/domain-user-application network
in a commodity Ethernet setting [90].

4.3 Interactive Exploration

As large graphs are often abstracted into hierarchical structures for visualization,
the most relevant interactions are on the manipulation of graph hierarchies, typi-
cally the hierarchy navigation interactions. In [26], Elmqvist and Fekete classified
the hierarchical abstraction based visualization into five types: above traversal,
below traversal, level traversal, range traversal and unbalanced traversal (Fig-
ure 11). The hierarchy navigation methods on large graphs generally work to
change the hierarchy setting within each type of the classification or switch be-
tween different types. In [5], Auber et al. proposed the method to start from

Fig. 11. The five types of hierarchical abstraction based visualization [26]. The inter-
active navigation methods on large graph visualization normally change the hierarchy
setting within each type or switch between different types.

an above traversal and leverage an overview+detail navigation to create a be-
low/range traversal abstraction on the focus. ASK-GraphView [1] allows the
user to click on each node aggregation to expand with any traversal type and
generates an unbalanced traversal. Similarly, Topological Fisheye [33] enables an
interactive switching among unbalanced traversals by specifying some focuses on
the graph. GrouseFlock [3] provides high-level hierarchy modification operators
based on the low-level delete and merge operations.

The focus+context interaction is another classical technique for graph visu-
alization. Though not designed for graph abstractions, this interaction can be
useful for exploring large graphs. By the famous hyperbolic visualizer [70], large
tree graphs can be presented with a user selected focus for details while preserv-
ing the context around the focus in its entirety. Topological Fisheye [33] achieves
the similar level-of-detail rendering by a pre-computed multi-level coarsening
tree. In [98], Van Ham and Perer proposed a method to start the graph analysis
from a search, where the focus is essentially the search result (Figure 12). Graph
context is expanded by a Degree-of-Interest diffusion from the initial focused
nodes.

For more comprehensive survey on interaction over graph visualizations,
readers can refer to [53,102].

4.4 View Transformation

Compared to the direct abstraction of large graph data, another class of meth-
ods work on the graph view generated from layout algorithms. These methods
transform the large graph view with the objective to minimize the visual clutter
invoked by the sheer graph size. Typical approaches in this class include edge
filtering and bundling.

In [60], Jia et al. proposed a method to filter weak edges according to an
edge centrality measure in large power-low graphs (Figure 13). Their experi-
ments showed that the filtered graph can still maintain most topology features
of the original large graph while significantly reducing visual complexity. Another
approach by Van Ham et al. [99] constructed a minimal spanning tree on the
large graph to reveal its backbone structure though many topology information
are lost after the transformation.

Fig. 12. Large graph exploration through Degree-of-Interest diffusion [98]. The data
set is US legal document citation network.

The edge bundling approaches [32,54,68,16], on the other hand, try to ag-
gregate similar edges into geometric clusters instead of removing them. The
hierarchical edge bundling method [54] defines the edge similarity by their paths
on the graph hierarchy. Specially for the tree visualization model, the edges are
bent toward the polyline connecting the hierarchies of the two endpoints. In
[16], Cui et al. proposed a framework to bundle edges in large general graphs
(Figure 14). Their method is inspired by the road map design that splits the
edge in straight line into multiple segments. The control mesh is generated first
according to the layout patterns. Then all the edges are forced to pass certain
control points on the mesh, leading to significant reductions in visual clutter of
the graph drawing.

Though view transformations can not deal with very large graphs alone, an
extra advantage is that they tend to be orthogonal to other graph abstraction
methods, which promises its usage in combining multiple approaches.

Fig. 13. Visualizations of a protein interaction graph: (a) Unsimplified; (b) Stochastic
edge sampling; (c) Geodesic clustering; (d) Edge centrality based filtering [60].

Fig. 14. Visualizations of an airline route graph. Left: Original layout. Right: Geomet-
ric edge bundling [16].

5 Software and Data Sets

There are many software and frameworks for visualizing and drawing graphs.
Among these, non-commercial ones that can work with large graphs include:

– Cytoscape [17] is a Java based software platform particularly popular with
biological community for visualizing molecular interaction networks and bi-
ological pathways.

– Gephi [40] is a Java based network analysis and visualization software pack-
age which is able to handle static and dynamic graphs. It is supported by a
consortium of french organizations.

– Graphviz [39] is one of the oldest open-source graph layout and rendering
engine, developed at AT&T Labs. It is written in C and C++ and hosts
layout algorithms for both undirected (multilevel spring-electrical and stress
models) and directed graphs (layered layout), as well as various graph theory
algorithms. Graphviz is incorporated in Doxygen, and available via R and
Python.

– OGDF [81] is a C++ class library for automatic layout of diagrams. De-
veloped and supported by Germany and Australian researchers, it contains
spring-electrical model based algorithm with fast multipole force approxi-
mation, as well as layered, orthogonal and planar layout algorithms.

– Tulip [95] is a C++ framework originated from University of Bordeaux I for
developer of interactive information visualization applications. One of the
goal of Tulip is to facilitate the reuse of components, it integrates OGDF
graph layout algorithms as plugins

There are a lot of free graph drawing software available, and the list above is
therefore non-exhaustive and only contains software that we are aware of, that
can work on large graphs. There are other free software each with its own unique
merit, but may not be designed to work on very large graphs. For example,

– Dunnart [23] is a C++ diagram editor. Its unique feature is the ability to
layout diagrams with constrains, and has features such as constraint-based
geometric placement tools, automatic object-avoiding poly-line connector

routing, and continuous network layout. It is developed at Monash Univer-
sity, Australia.

– D3.js [18] is a JavaScript library for manipulating web documents based on
data. Within D3 are spring-electrical model based layout modules solved by
a force directed algorithm. D3 makes it easy to take advantage of the full
capabilities of modern browsers, making the resulting visualization highly
portable. D3 is developed by Michael Bostock, Jeffrey Heer and Vadim
Ogievetsky at Stanford University.

An important resource for testing algorithms and systems is the real world
network data. There are quite a few websites that host large graph data from
real world applications. For example, the University of Florida Matrix Collec-
tion [19] contains over 2600 sparse matrices (which can be considered as the
adjacency matrix of graphs) contributed by practitioners from a wide range of
fields, with the oldest matrices dating as far back as 1970. The Stanford Large
Network Dataset [92] hosts about 50 networks from social networks, web crawls
and others. The Koblenz Network Collection [63] has about 150 large networks.
GraphArchive [41] contains many thousands of smaller graphs collected by the
graph drawing community. House of Graphs [80] offers graphs that are considered
interesting and relevant in the study of graph-theoretic problems.

6 Challenges in Large Graph Visualization

Since the 1980’s, a great deal of progress has been made in visualizing large
graphs. The key enabling ingredients include fast force approximations, the mul-
tilevel approach, algebraic techniques for the efficient solution of the stress and
strain models, and techniques to abstract the visual complexity of large graphs.
But as graphs become increasingly large, complex, and time-dependent, there
are a number of challenges to be addressed.

6.1 The Ever Increasing Graph Size

The size of graphs is increasing exponentially over the years [19]. Social net-
work is one area where we have graphs of unprecedented size. As of late 2013,
Facebook, for example, has over 1.2 billion users, while Twitter has over 230
millions. Other data sources may be smaller, but just as complex. For instance,
Wikipedia currently has 4.4 million interlinked articles, Amazon offers millions of
items, with recommendations connecting each item to other like-items. All these
pale in comparison when we consider that there are 100 billions interconnected
neurons in a typical human brain, and trillions of websites on the Internet. Each
of these graphs evolves over time. Furthermore, graphs likes these tend to exhibit
the small-world characteristic, where it is possible to reach any node from any
other in a small number of hops. In addition, for these large networks, the aver-
age degree of nodes tends to be quite small, because there are a lot more nodes
with smaller degree than those with very large ones (the power-law distribution).
All these features [71] present challenges to existing algorithms.

While we can attempt to apply existing algorithms to such large and com-
plex networks, often we find that the unique features of these networks call for
rethinking of the algorithmic ingredients. For example, we have seen in previous
sections that identifying vertices having very similar neighborhood is very im-
portant in the success of multilevel approach on graphs with celebrity-follower
structures, as well as in abstracting and understanding these large graphs. There
may well be other unique structures in large networks that should be identified
and taken advantage of.

The large size of some networks also means that finding a layout for such a
graph can take hours even with the fastest algorithms available. There have been
work in using GPUs and multiple CPUs [4,6,28,58] to speed up the computation
by a factor of 10 - 100. Given the size of graphs we are facing, further research
in better hardware utilization and in algorithms that scale even better than
quasilinear is warranted.

6.2 Dynamic and Complex Graphs

All the large and complex networks mentioned earlier are time-evolving. How
to visualize such dynamic networks is an active area of research [29,11,91] that
we have not touched upon due to space limit. There have been user studies to
determine what are important when understanding dynamic visualizations, often
in terms of what helps in preserving users’ mental map [74]. Dynamic network
visualization will likely continue to be area of strong interests.

How to draw complex small-world graph remains an open problem. In a
good graph drawing, nodes connected by an edge should be kept near to each
other. Yet in a small world graph, no node is more than a few hops away from
other nodes. Therefore drawings of a small world graph using current algorithms
almost always show a “hair ball”, with a dense core in the middle of the display
where most nodes try to be close to each other. There have been attempts
mentioned in previous section to overcome this by drawing a spanning tree first,
then adding on the remaining edges [100], or removing some edges with above
or below average centrality [59]. Further researches are needed to visualize such
graphs using these or other techniques, at the same time still visually capturing
the small world nature of these graphs.

The stress model is currently the best algorithm for drawing graphs with
predefined edge length. Improving its high computation and memory complexity
is likely to remain an active area of research.

6.3 Visual Representation and Abstraction

The size of graphs that can be feasibly laid-out with current algorithms already
exceeds many millions of vertices and billions of edges. With so many vertices
and edges, the traditional node-link diagram representation is close to a breaking
point. A typical computer screen only has a few million pixels, and we are running
out of pixels just to render every node.

One solution is to use a display with high resolution, including display walls,
and various novel ways to manipulate such a display (e.g., gesture or touch
based control). But even the largest possible display is unlikely to be sufficient
for rendering some of the largest social networks. One estimate puts human eyes
as having a resolution of just over 500 million pixels. Therefore even if we can
make a display with resolution higher than that for displaying the Facebook
social network, our eyes cannot make use of such a display very well.

Since the purpose of visualization is to help us to understand the data and
find structures and anomalies, for very large graphs, it is likely that we need
algorithms to discover structures and anomalies first [2], and display these in
a less cluttered form, but allowing the human operator to drill down to details
when needed.

Given the limitation of screen and human vision resolutions, distilled display
of the graph may also be important. Many of the abstraction methods discussed
in previous sections fill a need in this space. Further research in this area may
discover important graph patterns and structures that are universal in a class
of graphs and thus can be abstracted into motifs. It may also reveal faster and
more information-preserving ways to bundle edges.

Node-link diagram representation, while most common, may not be the most
user-friendly to the general public, nor is it the most pixel-efficient. Other rep-
resentation, such as a combination of node-link diagrams and matrices [52], or
maps [34], have been proposed.

Finally, large complex networks calls for fast and interactive visualization
system to navigate around the massive amount of information. A number of
helpful techniques for exploring graphs interactively, such as link-sliding [75],
have been proposed. Further research in this area, particular at a scale that
helps to make sense out of networks of billions of nodes and edges, are essential
in helping us to understand large network data.

7 Conclusions

In this article we review some of the most widely used algorithms, and the state
of the art, for laying out large graphs. We also discuss techniques for the visual
abstraction and compression of large graphs. While we are now able to visualize
many large graphs efficiently and aesthetically, there remain significant number
of challenges, due to the ever increasing size and complexity of graphs from real
world applications. Thus the area of large graph visualization will remain one
of constant innovations, both in graph theoretical research, as well as in applied
algorithms and techniques.

References

1. J. Abello, F. van Ham, and N. Krishnan. ASK-GraphView: A large scale graph vi-
sualization system. IEEE Transactions on Visualization and Computer Graphics,
12(5):669–676, 2006.

2. L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in
weighted graphs. In Proceedings of the 14th Pacific-Asia conference on Advances
in Knowledge Discovery and Data Mining (PAKDD 2010), 2010.

3. D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable exploration
of graph hierarchy space. IEEE Transactions on Visualization and Computer
Graphics, 14(4):900–913, 2008.

4. D. Auber and Y. Chiricota. Improved efficiency of spring embedders: taking
advantage of GPU programming. In 7th IASTED International Conference on
Visualization, Imaging and Image Processing, pages 169–175. ACTA Press, 2007.

5. D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Multiscale visualization
of small world networks. In Proceedings of the IEEE Symposium on Information
Visualization, pages 75–81, 2003.

6. F. R. B. Monien and H. Salmen. A parallel simulated annealing algorithm for gen-
erating 3d layouts of undirected graphs. In Proc. 3th Intl. Symp. Graph Drawing
(GD ’95), volume 1027 of LNCS, pages 90–101. Springer-Verlag, 1995.

7. S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency: Practice
and Experience, 6:101–117, 1994.

8. J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algorithm. Na-
ture, 324:446–449, 1986.

9. G. Bartel, C. Gutwenger, K. Klein, and P. Mutzel. An experimental evaluation
of multilevel layout methods. In Proc. 18th Intl. Symp. Graph Drawing (GD ’10),
pages 80–91. Springer, 2010.

10. V. Batagelj. Visualization of large networks. In R. A. Meyers, editor, Encyclopedia
of Complexity and Systems Science. Springer, New York, 2009.

11. U. Brandes and M. Mader. A quantitative comparison of stress-minimization ap-
proaches for offline dynamic graph drawing. In M. J. van Kreveld and B. Speck-
mann, editors, Graph Drawing, volume 7034 of Lecture Notes in Computer Sci-
ence, pages 99–110. Springer, 2011.

12. U. Brandes and C. Pich. Eigensolver methods for progressive multidimensional
scaling of large data. In Proc. 14th Intl. Symp. Graph Drawing (GD ’06), volume
4372 of LNCS, pages 42–53, 2007.

13. U. Brandes and C. Pich. An experimental study on distance based graph drawing.
In Proc. 16th Intl. Symp. Graph Drawing (GD ’08), volume 5417 of LNCS, pages
218–229. Springer-Verlag, 2009.

14. I. Bruss and A. Frick. Fast interactive 3-D graph visualization. LNCS, 1027:99–11,
1995.

15. A. Burton, A. J. Field, and H. W. To. A cell-cell Barnes Hut algorithm for fast
particle simulation. Australian Computer Science Communications, 20:267–278,
1998.

16. W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge cluster-
ing for graph visualization. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1277–1284, 2008.

17. Cytoscape. An open source platform for complex network analysis and visualiza-
tion. http://http://www.cytoscape.org/.

18. D3.js. Data-driven documents. http://d3js.org/.

19. T. A. Davis and Y. Hu. University of Florida Sparse Matrix Collection. ACM
Transaction on Mathematical Software, 38:1–18, 2011. http://www.cise.ufl.

edu/research/sparse/matrices/.

http://http://www.cytoscape.org/
http://d3js.org/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

20. V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In Advances in Neural Information Processing Systems
15, pages 721–728. MIT Press, 2003.

21. P. Drineas, A. M. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large
graphs via the singular value decomposition. Machine Learning, 56:9–33, 2004.

22. C. Dunne and B. Shneiderman. Motif simplification: improving network visual-
ization readability with fan, connector, and clique glyphs. In Proceedings of the
international conference on human factors in computing systems (CHI’13), pages
3247–3256, 2013.

23. T. Dwyer, K. Marriott, and M. Wybrow. Dunnart: A constraint-based network
diagram authoring tool. In I. Tollis and M. Patrignani, editors, Graph Draw-
ing, volume 5417 of Lecture Notes in Computer Science, pages 420–431. Springer
Berlin Heidelberg, 2009.

24. T. Dwyer, N. H. Riche, K. Marriott, and C. Mears. Edge compression techniques
for visualization of dense directed graphs. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2596–2605, 2013.

25. P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984.

26. N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information visu-
alization: Overview, techniques and design guidelines. IEEE Transactions on
Visualization and Computer Graphics, 16(3):439–454, 2010.

27. S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174,
2010.

28. Y. Frishman and A. Tal. Multi-level graph layout on the gpu. Journal IEEE
Transactions on Visualization and Computer Graphics, 13:1310–1319, 2007.

29. Y. Frishman and A. Tal. Online dynamic graph drawing. In proceeding of Eu-
rographics/IEEE VGTC Symposium on Visualization (EuroVis), pages 75–82,
2007.

30. T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force directed
placement. Software - Practice and Experience, 21:1129–1164, 1991.

31. P. Gajer, M. T. Goodrich, and S. G. Kobourov. A fast multi-dimensional algo-
rithm for drawing large graphs. LNCS, 1984:211 – 221, 2000.

32. E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglomerative edge
bundling for visualizing large graphs. In Proceedings of IEEE Pacific Visualization
Symposium, pages 187–194, 2011.

33. E. Gansner, Y. Koren, and S. North. Topological fisheye views for visualizing
large graphs. In IEEE Symposium on Information Visualization (InfoVis’04),
2004.

34. E. R. Gansner, Y. Hu, and S. Kobourov. Visualizing Graphs and Clusters as
Maps. IEEE Computer Graphics and Applications, 30:54–66, 2010.

35. E. R. Gansner, Y. Hu, and S. Krishnan. Coast: A convex optimization approach
to stress-based embedding. In S. Wismath and A. Wolff, editors, Graph Drawing,
volume 8242 of Lecture Notes in Computer Science, pages 268–279. Springer,
2013.

36. E. R. Gansner, Y. Hu, and S. C. North. A maxent-stress model for graph layout.
IEEE Trans. Vis. Comput. Graph., 19(6):927–940, 2013.

37. E. R. Gansner, Y. Koren, and S. North. Topological fisheye views for visualiz-
ing large graphs. IEEE Transactions on Visualization and Computer Graphics,
11:457–468, 2005.

38. E. R. Gansner, Y. Koren, and S. C. North. Graph drawing by stress majorization.
In Proc. 12th Intl. Symp. Graph Drawing (GD ’04), volume 3383 of LNCS, pages
239–250. Springer, 2004.

39. E. R. Gansner and S. North. An open graph visualization system and its appli-
cations to software engineering. Software - Practice & Experience, 30:1203–1233,
2000.

40. Gelphi. The open graph viz platform. https://gephi.github.io/.
41. GraphArchive. Exchange and archive system for graphs. http://www.

graph-archive.org/.
42. L. F. Greengard. The rapid evaluation of potential fields in particle systems. The

MIT Press, Cambridge, Massachusetts, 1988.
43. A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for

sparse matrix factorization. IEEE Transactions on Parallel and Distributed Sys-
tems, 5:502–520, 1997.

44. S. Hachul and M. Jünger. Drawing large graphs with a potential field based
multilevel algorithm. In Proc. 12th Intl. Symp. Graph Drawing (GD ’04), volume
3383 of LNCS, pages 285–295. Springer, 2004.

45. R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs nicely.
Discrete Applied Mathematics, 113:3–21, 2001.

46. K. M. Hall. An r-dimensional quadratic placement algorithm. Management Sci-
ence, 17:219–229, 1970.

47. J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kauf-
mann, 2001.

48. D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs. J.
Graph Algorithms and Applications, 6:179–202, 2002.

49. D. Harel and Y. Koren. A fast multi-scale method for drawing large graphs.
Journal of graph algorithms and applications, 6:179–202, 2002.

50. D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. LNCS,
pages 207–219, 2002.

51. B. Hendrickson and R. Leland. A multilevel algorithm for partition-
ing graphs. Technical Report SAND93-1301, Sandia National Laborato-
ries, Allbuquerque, NM, 1993. Also in Proceeding of Supercomputing’95
(http://www.supercomp.org/sc95/proceedings/509 BHEN/SC95.HTM).

52. N. Henry, J.-D. Fekete, and M. J. McGuffin. Nodetrix: a hybrid visualization of
social networks. IEEE Transactions on Visualization and Computer Graphics,
13:1302–1309, 2007.

53. I. Herman, G. Melancon, and M. S. Marshall. Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics, 6:24–43, 2000.

54. D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graphics,
12:741–748, 2006.

55. Y. Hu. A gallery of large graphs. http://research.att.com/~yifanhu/GALLERY/
GRAPHS/index.html.

56. Y. Hu. http://www2.research.att.com/~yifanhu/PUB/graph_draw_small.

pdfEfficient and High Quality Force-Directed Graph Drawing. Mathematica Jour-
nal, 10:37–71, 2005.

57. Y. Hu and J. A. Scott. A multilevel algorithm for wavefront reduction. SIAM
Journal on Scientific Computing, 23:1352–1375, 2001.

58. S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel mds on the gpu.
IEEE Transactions on Visualization and Computer Graphics, 15:249–261, 2009.

https://gephi.github.io/
http://www.graph-archive.org/
http://www.graph-archive.org/
http://research.att.com/~yifanhu/GALLERY/GRAPHS/index.html
http://research.att.com/~yifanhu/GALLERY/GRAPHS/index.html
http://www2.research.att.com/~yifanhu/PUB/graph_draw_small.pdf
http://www2.research.att.com/~yifanhu/PUB/graph_draw_small.pdf

59. Y. Jia, J. Hberock, M. Garland, and J. Hart. On the visualization of social and
other scale-free networks. IEEE Transactions on Visualization and Computer,
14:1285–1292, 2008.

60. Y. Jia, J. Hoberock, M. Garland, and J. C. Hart. On the visualization of social
and other scale-free networks. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1285–1292, 2008.

61. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31:7–15, 1989.

62. M. Khoury, Y. Hu, S. Krishnan, and C. E. Scheidegger. http://www2.research.
att.com/~yifanhu/PUB/lowrank_sm.pdfDrawing Large Graphs by Low-Rank
Stress Majorization. Comput. Graph. Forum, 31(3):975–984, 2012.

63. Koblenz. The koblenz network collection. http://konect.uni-koblenz.de.

64. Y. Koren, L. Carmel, and D. Harel. Ace: A fast multiscale eigenvectors com-
putation for drawing huge graphs. In INFOVIS ’02: Proceedings of the IEEE
Symposium on Information Visualization (InfoVis’02), pages 137–144, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

65. E. Krujaa, J. Marks, A. Blair, and R. Waters. A short note on the history of
graph drawing. In Proc. 9th Intl. Symp. Graph Drawing (GD ’01), pages 272–
286. Springer-Verlag, London, UK, 2002.

66. J. B. Kruskal. Multidimensioal scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 29:1–27, 1964.

67. J. B. Kruskal and J. B. Seery. Designing network diagrams. In Proceedings of
the First General Conference on Social Graphics, pages 22–50, Washington, D.C.,
July 1980. U. S. Department of the Census. Bell Laboratories Technical Report
No. 49.

68. A. Lambert, R. Bourqui, and D. Auber. Winding Roads: Routing edges into
bundles. Computer Graphics Forum, 29:853–862, 2010.

69. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyper-
bolic geometry for visualizing large hierarchies. In SIGCHI CONFERENCE ON
HUMAN FACTORS IN COMPUTING SYSTEMS (CHI ’95), pages 401–408.
ACM, 1995.

70. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyper-
bolic geometry for visualizing large hierarchies. In Proceedings of the international
conference on Human factors in computing systems (CHI’95), 1995.

71. J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics, 6:29–123, 2009.

72. F. Lorrain and H. C. White. Structural equivalence of individuals in social net-
works. The Journal of Mathematical Sociology, 1(1):49–80, 1971.

73. MDSJ. Multidimensional scaling for java. http://www.inf.uni-konstanz.de/

algo/software/mdsj/.

74. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental
map. J. Vis. Lang. Comput., 6(2):183–210, 1995.

75. T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J. Fekete. Topology-aware
navigation in large networks. In CHI ’09: Proceedings of the 27th international
conference on Human factors in computing systems, pages 2319–2328, New York,
NY, USA, 2009. ACM.

76. T. Munzner. Exploring large graphs in 3d hyperbolic space. IEEE Comput.
Graph. Appl., 18:18–23, 1998.

http://www2.research.att.com/~yifanhu/PUB/lowrank_sm.pdf
http://www2.research.att.com/~yifanhu/PUB/lowrank_sm.pdf
http://konect.uni-koblenz.de
http://www.inf.uni-konstanz.de/algo/software/mdsj/
http://www.inf.uni-konstanz.de/algo/software/mdsj/

77. T. Munzner and P. Burchard. Visualizing the structure of the world wide web in
3d hyperbolic space. In VRML ’95: Proceedings of the first symposium on Virtual
reality modeling language, pages 33–38, New York, NY, USA, 1995. ACM.

78. M. Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences (PNAS), 103(23):8577–8582, 2006.

79. A. Noack. An energy model for visual graph clustering. In Proceedings of the 11th
International Symposium on Graph Drawing (GD 2003), volume 2912 of LNCS,
pages 425–436. Springer, 2004.

80. H. of Graphs. A database of interesting graphs. https://hog.grinvin.org/.
81. OGDF. Open graph drawing framework. http://www.ogdf.net/.
82. C. Papadopoulos and C. Voglis. Drawing graphs using modular decomposition.

Journal of Graph Algorithms and Applications, 11(2):481–511, 2007.
83. S. Pfalzner and P. Gibbon. Many-Body Tree Methods in Physics. Cambridge

University Press, Cambridge, 1996.
84. A. Quigley. Large scale relational information visualization, clustering, and ab-

straction. PhD thesis, Department of Computer Science and Software Engineer-
ing, University of Newcastle, Australia, 2001.

85. A. Quigley and P. Eades. FADE: graph drawing, clustering, and visual abstrac-
tion. LNCS, 1984:183–196, 2000.

86. I. Safro, D. Ron, and A. Brandt. Multilevel algorithms for linear ordering prob-
lems. J. Exp. Algorithmics, 13:1.4–1.20, 2009.

87. Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large heterogeneous
social networks by semantic and structural abstraction. IEEE Transactions on
Visualization and Computer Graphics, 12(6):1427–1439, 2006.

88. L. Shi, N. Cao, S. Liu, W. Qian, L. Tan, G. Wang, J. Sun, and C.-Y. Lin. HiMap:
Adaptive visualization of large-scale online social networks. In Proceedings of the
IEEE Pacific Visualization Symposium, pages 41–48, 2009.

89. L. Shi, Q. Liao, X. Sun, Y. Chen, and C. Lin. Scalable network traffic visualization
using compressed graphs. In IEEE International Conference on Big Data, pages
606–612, 2013.

90. L. Shi, Q. Liao, H. Tong, Y. Hu, Y. Zhao, and C. Lin. Hierarchical focus+context
heterogeneous network visualization. In Proceedings of the IEEE Pacific Visual-
ization Symposium, 2014.

91. L. Shi, C. Wang, Z. Wen, H. Qu, C. Lin, and Q. Liao. 1.5d egocentric dynamic
network. IEEE Transactions on Visualization and Computer Graphics, to appear.

92. snap. Stanford large network dataset collection. http://snap.stanford.edu/

data.
93. R. Tamassia. Handbook of Graph Drawing and Visualization. Chapman &

Hall/CRC, 2013.
94. W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,

17:401–419, 1952.
95. Tulip. Data visualization software. http://http://www.cytoscape.org/.
96. D. Tunkelang. A Numerical Optimization Approach to General Graph Drawing.

PhD thesis, Carnegie Mellon University, 1999.
97. W. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,

13:743–768, 1963.
98. F. van Ham and A. Perer. “Search, Show Context, Expand on Demand”: Sup-

porting large graph exploration with degree-of-interest. IEEE Transactions on
Visualization and Computer Graphics, 15(6):953–960, 2009.

99. F. van Ham and M. Wattenberg. Centrality based visualization of small world
graphs. Computer Graphics Forum, 27(3):975–982, 2008.

https://hog.grinvin.org/
http://www.ogdf.net/
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://http://www.cytoscape.org/

100. F. van Ham and M. Wattenberg. Centrality based visualization of small world
graphs. Computer Graphics Forum, 27:975–982, 2008.

101. F. van Ham, M. Wattenberg, and F. B. Viegas. Mapping text with phrase nets.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1169–1176,
2009.

102. T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van Wijk,
J.-D. Fekete, and D. W. Fellner. Visual analysis of large graphs. EuroGraphics -
State of the Art Report, pages 37–60, 2010.

103. C. Walshaw. A multilevel approach to the travelling salesman problem. Oper.
Res., 50:862–877, 2002.

104. C. Walshaw. A multilevel algorithm for force-directed graph drawing. J. Graph
Algorithms and Applications, 7:253–285, 2003.

105. C. Walshaw. Multilevel refinement for combinatorial optimisation problems. An-
nals of Operations Research, pages 325–372, 2004.

106. C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning
for adaptive unstructured meshes. Journal of Parallel and Distributed Computing,
47:102–108, 1997.

107. M. Wattenberg. Visual exploration of multivariate graphs. In Proceedings of the
international conference on human factors in computing systems (CHI’06), pages
811–819, 2006.

108. D. Watts and S. Strogate. Collective dynamics of “small-world” networks. Nature,
393:440–442, 1998.

109. G. Young and A. S. Householder. Discussion of a set of points in terms of their
mutual distances. Psychometrica, 3:19–22, 1938.

	Visualizing large graphs

