Partitioning and Scheduling Algorithms and Their
Implementation in FELISA — An Unstructured
Grid Euler Solver

Y. F. Hu?, R. J. Blake?, J. Peiro®, J. Peraire® and K. Morgan®

¢ Daresbury Laboratory, S.E.R.C., Warrington WA4 4AD, United Kingdom

b Dept. of Aeronautics, Imperial College of Science, Technology and Medicine,
London SW7 2BY, United Kingdom

¢ Dept. of Civil Engineering, University College of Swansea, Swansea SA2 8PP,
United Kindom

1. INTRODUCTION

The numerical solution of partial differential equations with finite element
algorithms on distributed memory parallel computers demands that the global
mesh be divided into subdomains, the number of which corresponds to the num-
ber of processors. The decomposition should be such that the number of elements
per subdomain is roughly the same, to ensure global load balancing, and the num-
ber of shared faces (edges) between subdomains are minimised to minimise the
communication costs. In this paper we shall start with a comparison of a num-
ber of established grid partitioning algorithms [1-2]. A new hybrid algorithm [3]
is then proposed and found to be highly competitive on small to medium size
meshes.

Once a partitioning has been established for an irregular grid, a communica-
tion scheme need to be devised to organize the communication between processors
[4] Message passing scheme of blocked pairwise exchange in a number of stages
is studied. In this paper we develop algorlthms to deal with non-uniform mes-
sage lengths. The algorithms [5] attempt to minimise the communication time
by scheduling messages of similar lengths in the same stage of the message pass-
ing scheme. It is found that this load balancing of communication can reduce
the communication costs by up to 30%. Some results on other message passing
methodology will also be given.

The partitioning and scheduling algorithms are used as a preprocessor in a
parallel version of the unstructured grid finite element 3D explicit Euler equation
solver FELISA [6]. Results of this parallel solver will be given.

2. PARTITIONING OF MESHES

Since finding the best partitioning is in general an NP hard problem, a num-
ber of heuristic partitioning algorithms have been suggested which attempt to
find an approximation to the best partitioning. Among these algorithms are:
recursive coordinate bisection (RCB), recursive graph bisection (RGB) and re-
cursive spectral bisection (RSB) [1]; MINCUT algorithm [2]; greedy algorithm

[7]; inertial algorithm (see [8]); physical algorithms such as simulated annealing,
genetic algorithm and neural net [9-10].

The first four algorithms listed above are tested on 4 meshes with the num-
ber of elements ranging from 771 to 5520. The first three meshes are 2D meshes,
the last is a 3D mesh. For each mesh, its dual graph is partitioned. Because some
of these four algorithms can give erroneous results if the mesh to be worked on is
disconnected, therefore in our implementations a preprocessor is included which
checks the connectivity of the graph. A disconnected graph will be made con-
nected by linked different components of the graph. The graphs are partitioned
into 16 subdomains. We report in Table 1 the edges cut (the number of shared
faces (edges) between subdomains) for each algorithm on the 4 problems.

Table 1 Comparison of edges cut of five partitioning algorithms

Meshes| RCB RGB RSB | MINCUT [MINGRAPH
788 142 142 108 133 116
771 232 201 150 188 148
3564 293 334 261 200 233
2520 2876 1737 1000 896 822

It is found that the simple recursive coordinate bisection (RCB) algorithm
takes little time, but the number of edges cut is relatively high compared with
other algorithms. The recursive graph bisection (RGB) algorithm also takes very
little time, it is comparable with or even worse than RCB on 2D problems, but
much better on the 3-D problem, which confirms an observation of Simon [1]. The
MINCUT gives very competitive numbers of edges cut, but suffers from very long
running time. The recursive spectral bisection (RSB) algorlthm gives very good
results of edges cut in a reasonable time. Therefore comparatively RSB is the
best algorithm of the four.

The very competitive results on edges cut for the MINCUT make us try
to modify the algorithm to reduce the CPU time. The MINCUT algorithm
is normally started with randomly generated initial partitions. It attempts to
improve the partitioning by swapping elements between subdomains to reduce
the edges cut. Randomly generated partitions have very high numbers of edges
cut, thus will take the MINCUT algorithm many iteration to bring the number
of edges cut down, which results in a long CPU time. It is natural to try to start
with a reasonably good initial partition and to improve upon it using MINCUT.
On the other hand this initial partition should not take too much time to generate.
The graph bisection algorithm is thus chosen to generate an initial bisection of the
graph, then the bisection is improved upon using the MINCUT algorithm. The
resulting algorithm is called MINGRAPH. The results for the hybrid algorithm
are reported in the last column of Table 1. It is found that in 3 out of the 4 cases
the MINGRAPH algorithm gives partitioning of better quality than the recursive
spectral bisection algorithm. Its running time is also competitive.

These algorithms are also tested on large size meshes of up to 353710 el-
ements. It is found that with meshes of size more than 10000, MINCUT and
MINGRAPH takes too long time to converge. RCB and RGB suffer from poor
quality of the partitioning. Thus for large meshes, we will used RSB algorithm
for partitioning. Recently, a multilevel implementation of the RSB has been
suggested [11]. This uses ideas similar to multigrid methods to speed up the

RSB algorithm. We found that the new approach does give a much faster RSB
algorithm, making it suitable for the partitioning of large meshes.

3. SCHEDULING OF MESSAGE PASSING

Considering the 2D mesh consisting of 788 elements used in Table 1. Let
the mesh be partitioned into 4 subdomains of 197 elements each using the re-
cursive coordinate bisection (RCB) algorithm, and each subdomain is assigned
to one processor. It is found that, for example, processor 1 shares 9 edges with
processor 2. Assume the amount of communication between processors is pro-
portional to the number of edges they share, then the communication task can be
described by Table 2, in which the adjacent processors (adjproc) and the message
lengths (msglen, in brackets) are given. For instance from the table it is seen
that processor 4 is to communication with processors 2 and 3, the amount of
communication is 14 and 7 (units) respectively.

Table 2 A communication task table

Processor | adjproc (msglen)
1 20) 13(17) | —
2 1(9) | 3(2) | 4(14)
3 1(17) | 2(2) | 4(7)
1 2(14) | 3(7) | —

3.1 Scheduling of Blocked Message Passing

The parallel computer we use, Intel 1860 hypercube, has two ways of message
passing. The blocked message passing is given by calling FORTRAN subroutines
csend and crecv. A processor calling crecv for example, has to wait for the
message to be received before it can starting other part of the computer program.
The wunblocked message passing is given by subroutine isend and irecv. The
processor can start doing other work immediately after calling these subroutines.
When it reaches a point where the message to be received is needed, it can call
subroutine msgwait to wait for the message to arrive. In this subsection the
blocked message passing will be assumed.

Table 3 A scheduling scheme

Processor | adjproc (msglen)
1 209) [3(17) | =
2 1(9) | 4(14) | 3(2)
3 4(7) | 1(17) | 2(2)
4 3(7) | 2(14) | —

Venkatakrishnan, Simon and Barth [4] suggested that communication can
be scheduled in stages, each stage processors grouping in pairs will do message
exchanges. For example the communication task given by Table 2 can be done
in three stages, as shown by Table 3. In the first stage processors (1,2) and
(3,4) exchange messages, in the second stage processors (1,3) and (2,4) exchange
messages and in the final stage processors (2,3) exchange messages. Fach stage

is followed by a synchronization. In the following we will discuss how to form
such a scheme that has minimal communication costs.

Relating to each communication task table, a communication task graph is
defined as an undirected graph. Each of its vertices corresponds to a processor.
Two vertices 7 and 7 are linked by an edge with weight msglen if and only if
processor ¢ and j shares msglen edges. The scheduling of communication is
found to be equivalent to colouring the edges of the communication task graph
so that no edges that start from the same vertex have the same colour [4].

Let maxzady denotes the maximum number of adjacent processors to any one
processor (mazadj is also the largest degree in the communication task graph).
Venkatakrishnan, Simon and Barth [4] derived a scheduling algorithm that can
organize the communication in no more than mazadj + 1 stages, although the
details of how this can be done are not given in their paper. They assumed that
the message lengths are uniform. Under this assumption any scheduling schemes
which have the same number of stages will have the same communication cost.
We shall however consider the general case when the message lengths are not
uniform.

Table 4 A communication task table

Processor adjproc (msglen)
T 9@ [1200)] — | — | —
2 3(3) [10(1)| 11(3) |13(6)| -—
3 [2(3) [10(4)[11(8) [12(1)] —
4 7(3) |14(5)| 15(6) | — —
5 9(2) [10(4)| - — —
6 [11(4)[123)| 16(4) | — | —
7 14(3) [10(2)] 13(4) [14(6)] —
8 15(6)|16(6)| — — —
9 1(2) | 5(2)| - — —
10 [2(1) 34 | 5(4) | 7(2) [13(10)
11 [2(3) | 3(8) | 6(4) [12(2)] —
12 |1(2) [3(1) | 6(5) [11(2)]16(6)
13 [2(6) | 7(4) [10(10)[14(3)| —
14 4(5) [7(6) | 13(3) | — —
15 4(6) | 8(6) | — — —
16 6(4) | 8(6) | 12(6) | — —

The colouring of edges of a graph with no colour conflict has been studied in
Graph Theory and a theorem by Vizing [12] states that the minimum number of
colours needed to colour the edges of a graph (whose maximum degree is mazady)
without conflict is either mazadj or mazxzadj+ 1, but to decide whether the graph
can be coloured with only mazadj colours is an NP-hard problem. A scheduling
algorithm VIZING based on the proof, which can produce a scheduling scheme
having no more than mazadj + 1 stages, is implemented [5]. This algorithm is
applied to the communication task shown in Table 4, which is a task given by
using RSB to partition the mesh with 788 elements into 16 subdomains. The

scheduling scheme produced by algorithm VIZING is given by Table 5 (left),
which has a communication cost of 36 (equals to the sum of the maximum msglen
in each stage). However since now the message lengths are no assumed to be
uniform, the scheduling scheme given by Table 5 (left) is not optimal.

Table 5 A scheduling scheme (left) and a near optimal scheme (right)

Processor adjproc (msglen) adjproc (msglen)
T)2l = [= = 120 = [=T = [902)
2 3(3) [10(1)[11(3)[13(6)] — 3(3) [11(3)[10(1)]|13(6)] —
3 2(3) [T1(8)[T0(@) 121 — [123) [12(D)[— [10(4)[11(8)
4 7(3) [14(5)|15(6)] — — — — [7(3) [14(5)] 15(6)
5 @9 — | = | = [[10@ = = [92)] =
6 T I6@)26) — | = 16| — | — [11(4)[1205)
7 4(3) [13()[14(6) 10D = [113(3)[10(2)[4B3) | — [14(6)
8 15(6)] — [16(6)| — — — — — [15(6)|16(6)
9 B = =1 = [=1 =1 = 1350[12
10 5(2) [2(1) [304) [7(2) 13010 [5(@) [7(2) [2(1) [3(4) [13(10)
11 6(4) [33)1203) 1 — 11202 [= [203)12(2)[6(4) [3(8)
12 [16(6)[1(2)[6(5) [3(1) [11(2) | [1(2) [3(1) [11(2)[16(6)] 6(5)
13 [14(3)[7(3) | — [2(6) [10(10)] [7(2) [12(3)[— [2(6) [10(10)
14 13(3)[4(5) |7(6) | — — — [13(3)] — [4(5)]| 7(6)
15 8(6) — |4(6)] — — — — — [8(6) | 4(6)
16 12(6)[6(4) | 8(6) | — — 6(4)] — — [12(6)| 8(6)

max. msglen| 6 8 6 6 10 4 3 3 6 10

comm. cost 36 26

We suggest here a near optimal scheduling algorithm REDUCE to be used
after using the algorithm VIZING. The idea of algorithm REDUCE is to group
messages of similar lengths in the same stage, so as to attempt to minimise
the overall communication cost. The algorithm is described as follows on the
communication task graph. a) First find the edge e; with the largest message
length and assume its colour is ¢;. Lock the edge. b) Then find among unlocked
edges an edge e; with the largest message length, assume the colour of e; is
co. If ¢; = ¢o then the two large messages are indeed in the same stage, lock
ez. Otherwise find the largest path containing e; and coloured alternately with
co and c;. If such a path contains locked edges, then it is impossible to group
e; and ey in the same stage, so lock ey; otherwise exchange colours ¢y and c¢;
on the path, lock e;. c) Repeat the process from b) until all edges are locked,
then remove edges coloured with ¢; and restart from a). Applying the algorithm
REDUCE on the scheduling scheme given by Table 4 results in Table 5 (right),
with the communication cost reduced from 36 to 26.

The communication costs of 36 or 26 in Tables 5 are just predictions of the
actual costs that the scheduling schemes will give, under the assumption that
there are no link contentions. In order to see if such prediction still has any sig-
nificance in practice, simulations have been run on an Intel 1860 hypercube. Two

meshes are considered and the five partitioning algorithms discussed in Section 1
are used to partition each mesh into 16 subdomains. For each partitioning, two
message passing schemes are generated using VIZING and VIZING+REDUCE
respectlvely For each message passing scheme, a simulated communication time
is derived as follows. Sixteen nodes of the 1860 are each given a copy of the same
message passing scheme (such as those of Table 5). Each node determines from
the scheme to whom (given by adjproc) it needs to communicate, and the length
of the message (given by msglen). For each shared edge, it is assumed 10 double
precision numbers need to be exchanged. The communication time is taken to
be the elapsed time between the start and the finish of the message passing. It is
found [5] that the predicted costs reflect the trend of actual communication time
very well. The nearly optimal scheduling schemes given by VIZING+REDUCE
reduce the communication cost of scheduling scheme, given by using VIZING
only, by 16% on average, and over 30% in some cases.

3.2 Other Message Passing Strategies

The communication strategy in Section 3.1 will be termed blocked and sched-
uled (BS) message passing strategy. Blocked but unscheduled (BU) message pass-
ing strategy is also tested, given by the following pseudo code:

Doz = 1, Number of Neighbors
csend data to all neighbors
End do
Doz = 1, Number of Neighbors
crecv data from all neighbors
End do
so is unblocked and unscheduled (UU) strategy, given by the above code but with
csend and crecv replaced by 1send and 1recv. These three strategies are compared
on a number of communication tasks. A typical example is given in Table 6, where
the communication task is given by using the multilevel implementation of the
recursive spectral bisection (RSB) algorithm to partition a mesh with 353710
elements into 16 subdomains. The communication time (in milliseconds) to do
one message passing using one of the three communication strategies is listed in

Table 6.

Table 6 The communication time taken by the three strategies

Scheduling Scheme | BS | BU | UU
Not scheduled — 313 | 216
VIZING 343 | 262 211|
VIZING + REDUCE | 239 | 243 | 213

As can be seen from Table 6, for the two blocked communication strate-
gies, our near optimal scheduling algorithm REDUCE improves the communica-
tion time by between 7% to 30%. The unblocked communication strategy takes
the least communication time. However the two unscheduled strategies BU and
UU put more strain to the computer, and some systems may not support un-
blocked communication. The blocked and scheduled communication strategy is
thus adopted in our work on FELISA (see next section) for its portability. Of
course when code optimization is the main consideration, one should use un-
blocked strategy if the system allows.

4. APPLICATION TO FELISA

The partitioning and scheduling algorithms discussed in the previous two
sections form a preprocessor. This preprocessor is used in a parallel version of an
unstructured grid Euler solver — FELISA. A typical result of running 10 iteration
of the parallel code on a full aircraft configuration (with 353710 elements) is
shown in Table 7. As can be seen, the algorithm scales quite well with the

increase of the number of processors. On 32 processors, the performance is about
equivalent to that of three CRAY YMP nodes.

Table 7 Time taken by FELISA

Cray YMP Elapse time (seconds)
1 Processor 183

Intel 1860 hypercube |Elapse time (seconds)

8 Processors 208
16 Processors 114
32 Processors 67

REFERENCE

[1] H. D. Simon, Partitioning of unstructured problems for parallel processing,
Computer Systems in Engineering, 2 (1991) 135-148.

[2] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning
graphs, Bell Systems Tech. J. 49 (2) (1970) 291-308.

[3] Y. F. Hu and R. J. Blake, Numerical experiences with partitioning of
unstructured meshes, Daresbury Laboratory preprint DL./SCI/P865T, 1993.

[4] V. Venkatakrishnan, H. D. Simon and T. J. Barth, A MIMD implementation
of a parallel Euler solver for unstructured Grids, Report RNR-91-024, NAS
Systems Division, Applied Research Branch, NASA Ames Research Center,
1991.

[5] Y.F. Hu and R. Blake, Some algorithms for the scheduling of message
passing, Daresbury Laboratory preprint DL/SCI/P871T, 1993.

[6] J. Peiro, J. Peraire and K. Morgan, FELISA System Version 1.0, User
Manual.

[7] C. Farhat, A simple and efficient automatic FEM domain decomposer,
Computers and Structures 28 (1988) 579-602.

[8] B. Hendrickson and R. Leland, Multidimensional spectral load balancing,
Sandia National Laboratories, Albuquerque, NM 87185, 1993.

[9] R. D. Williams, Performance of dynamic load balancing algorithms for
unstructured mesh calculations, Concurrency: Practice and Experience 3
(1991) 457-481.

[10] N. Mansour, Allocating data the multicomputer nodes by physical optimiza-
tion algorithms for loosely synchronous computations, Concurrency: Prac-
tice and Experience 4 (1992) 557-574.

[11] S. T. Barnard, H. D. Simon, A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems, Report RNR-92-
033, NASA Armes Research Center, November 1992.

[12] V. G. Vizing, On an estimate of the chromatic class of a p-graph (Russian),
Diskret. Analiz. 3 (1964) 25-30.

