An Extrapolation Algorithm for Differential Algbraic Equations
From Process Engineering and Parallel Implementation

Y. F. HU and R. J. BLAKE
Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom

Abstract

Parallel solution of Differential Algebraic Equations (DAE’s) from
process engineering, using a combination of the extrapolation method
and an implicit integration scheme, are investigated. The extrapolation
method is implemented in parallel on the Intel i860. The resulting
extrapolation algorithm is found to be much faster than the implicit
Euler solver itself. The parallelism is coarse grained. The study reveals
the difficulties in load balancing the parallel extrapolation algorithm.

1 INTRODUCTION

In the chemical process engineering, plant components, such as the distilla-
tion columns, are usually modeled by a set of equations. In an equation ori-
ented approach, the following set of differential-algebraic equations (DAE’s)
(1) with initial values can be used to model the dynamic process flowsheeting
problems.

G(y(®),y'(t),2(t),1) = 0,
F(y(t),2(),t) = 0,

Ey@),)=, =

Where y € R" and z € R™ are state and algebraic variables to be solved,
nonlinear vector functions G, F' and E are of dimensions n, m and n re-
spectively. The system is normally stiff and sparse. To solve the problem
it is necessary to integrate the system (1) up to the final time ¢ = ¢; using
an appropriate integration scheme. Implicit integration schemes are nor-
mally used for stability. The nonlinear equations resulted from the implicit
integration scheme can be solved using Newton’s method, with the sparse
Jacobian systems solved using a sparse solver, such as the MA28 in the
Harwell subroutine library.

A typical process simulation problem can involve over a few thousand
variables, integration of (1) over a long time period can be very computing
intensive. The sizes and complexity of the problems chemical engineers can

solve are thus restricted by the computing power available. Increasingly,
efforts are being made to utilise the vector and parallel computers, which
in theory can have a much higher peak performance than the traditional
sequential computers. However, progress has been patchy (for a review see
Moe and Hertzberg (1994)).

Effective use of parallel computers for the solution of systems like (1)
presents a great challenge, because the initial value problems are intrinsi-
cally sequential (see [1]). Parallelism in the solution of (1) can be roughly
categorised into three sources (Bellen and Zennaro (1993)), namely paral-
lelism across the system, parallelism across the time and parallelism across
the method.

Within the process engineering community, a number of efforts have been
made to investigate the effective use of parallel computers in the solution of
(1). Cofer and Stadtherr (1994) investigated the use of direct sparse solver
as a preconditioner for conjugate gradient type solvers. Paloschi (1994)
used iterative solvers, such as the GMRES (Saad (1989)), for the solution
of the sparse Jacobian systems. Skjellum (1990) and of Secchi et al. (1993)
explored the waveform relaxation method and the work seems to be the most
promising in the area. Parallelism across the system, rather than across the
time, was actually exploited. The DAE system was partitioned and each
subsystem was then solved on a processor for its assigned variables by using
the approximate waveforms of other variables. This process may have to
be repeated over the same time intervals for a number of times until the
waveforms converge. The resulting speedup seems very promising although
the method remains to be tested for more general flowsheeting systems.

So far as the authors know, there was little effort the investigation of the
parallelism across the method in the flowsheeting area. It is the aim of this
work thus to investigate the potential of the parallel extrapolation method.

2 PARALLEL EXTRAPOLATION METHOD

An in-house implicit Euler code (BESOLVER) of ICI Engineering was cho-
sen as the test bed for exploring the use of parallel computers in process
engineering.

The code uses the implicit Euler method to integrate equation (1). Thus
(1) is discretised into (2):

(k1) _ (k)
(kt1) Yo " Y (k1) 4k41))
G<y Tpm 0F ot) =0

F(y(k+1),z(k+1)’t(k+1)) - 0,

with y®) = y@t®), 2B = z®)), =+ = &) 4 pk) 40 = ¢ and
E(y©,¢®) =0

Each of the discretised equations (2) is solved using Newton’s method,
with the sparse systems solved using MA28 subroutines of the Harewell
library. As there is yet no general sparse solver available that solves the type
of sparse systems from flowsheeting efficiently on parallel computers as far
as the authors understand, it is decided to explore the method parallelism.
Extrapolation method is chosen because it provides some scope of parallism,
and is relatively easy to be coupled into the existing code BESOLVER.

The basic idea of extrapolation method is to integrate the equation from
time ¢ to time ¢ + H independently with several different step sizes such
as H, H/2, H/3, ..., using an appropriate integration scheme (in this case
the BESOLVER), and then to combine the results of all these independent
integrations to get a solution at time ¢ + H of higher accuracy. Let T;
denote the results of integration from time ¢ to t + H with step size of
H/n;(i =1,2,...). The extrapolation formula is then

7—.17-,": — 1—.17'71716

Tipi1 =T+ .
PR i fng g — 1

The independent integrations within the extrapolation method using
step lengths H/n; (i = 1,2,...) can be performed on different processors,
thus parallelism across methods can be exploited in this way. However,
the computational load of the parallel extrapolation method is clearly not
balanced. Considering using an explicit integration scheme (such as an ex-
plicit Runge-Kutta) combined with the extrapolation method to solve an
ODE, in this case the computational load on processor 7 is proportional to
n;. Thus processors with smaller step length will take longer to integrate
from ¢ to t + H. The best speedup that can be achieved on p processors, if
{ni} ={1,2,...,p}, isroughly (1+2+...+p)/p=(p+1)/2.

However, when an implicit scheme is used with the extrapolation method
to solve the general DAE system (1), the computational load of processors
is difficult to predict. A processor with a large integration step length may
not necessarily has less computational load than a processor that integrates
in more steps with a proportionally small step length. This is because even
though the former has less nonlinear systems to solve, these nonlinear sys-
tems are generally more difficult due to the large step length, thus may

Table 1: Table 1 Some details of the test cases which are distillation columns

number of test case 1 (TC1) test case 2 (TC2) test case 3 (TC3)
trays 9 29 59

state variables 63 203 413
algebraic variables 312 872 1712
equations 375 1075 2125

require more Newton iterations per system. There are also other sources of
load unbalance due to the change of step length.

The parallel implementation adopts the master-slave approach. In this
approach processor 0 is designated as the master and processor ¢ (i =
1,...,p—1) the slaves. Slave i integrates with step size H(t)/i from time ¢
to t + H(t) and sends the results to the master as soon as it finishes. The
master uses results that are sent to it from whichever processor that has
finished it integration. Once the master finds that the solution has an error
below the required tolerance, it waits for the those slaves that are still in-
tegrating, but ignores the results found by them (ideally the master should
interrupt these processors and ask them to stop integrating, but a suitable
way of doing this was not found on the Intel. The time wasted in waiting
will be reported). The master then works out the new time ¢ := ¢ + H(¢)
and new step size H(t), and sends them with the solution at time ¢ to the
slaves, and the above process is repeated. This parallel algorithm will be
called EXEULER.

Three test cases are used to test the algorithms. Each of them models
a distillation column. The number of trays, variables and equations for the
three test cases are listed in Table 1.

The BESOLVER and EXEULER are tested on the three test cases of
Table 1, on the Intel i860 parallel computers. Two integration intervals,
[to, t1] = [0,1] and [tg,t1] = [0,10] are used. The results of the algorithms
on one of the three test cases are summarised in Table 2. The tolerance tol,
integration interval [0, ¢;], elapsed time time (in seconds), wasted time time,,
(in seconds), number of integration steps on the master nsteps (including
rejected steps, each step on the master consists of i-steps on slave i, i =
1,...,p— 1), average order k, error of the final solution error, are reported
in the tables.

Speedup is defined approximately as t;¢q/time, with ¢, the time needed
for sequential implementation, and given in the last columns of the table.

Table 2: Results of using BESOLVER and EXEULER on test case one

tol t1 time time, nsteps k error tseq Sp
BESOLVER
1.0E-1 1.0 9.81 - 81 - 4.18E-3 - -
1.0E-2 1.0 45.19 - 702 - 4.59E-4 - -
1.0E-3 1.0 323.79 - 7048 - 4.96E-5 - -
1.0E-4 1.0 17826.96 - 389584 - 2.54E-6 - -
1.0E-1 10.0 13.92 - 100 - 2.18E-6 - -
1.0E-2 10.0 56.44 - 840 - 1.71E-7 - -
1.0E-3 10.0 411.33 - 8425 - 3.65E-8 - -
1.0E-4 10.0 35122.00 - 734055 - 5.44E-9 - -
EXEULER on 4 processors
1.0E-1 1.0 1.80 0.57 7 2.14 6.26E-3 3.91 217
1.0E-2 1.0 4.66 1.20 14 2.27 5.07E-4 8.59 1.84
1.0E-3 1.0 10.43 1.05 45 2.82 5.82E-5 20.88 2.00
1.0E-4 1.0 29.54 0.90 130 2.93 1.73E-6 57.93 1.96
1.0E-5 1.0 60.96 1.47 268 2.96 1.84E-7 119.91 1.97
1.0E-6 1.0 119.29 2.31 521 2.97 2.66E-8 237.60 1.99
1.0E-1 10.0 3.08 0.79 13 2.15 2.37E-6 6.38 2.07
1.0E-2 10.0 6.34 1.32 23 2.30 1.33E-7 12.24 1.93
1.0E-3 10.0 15.65 1.01 64 2.75 2.91E-8 30.53 1.95
1.0E-4 10.0 39.89 1.21 171 2.90 3.86E-10 78.93 1.98
1.0E-5 10.0 92.72 1.64 386 2.95 3.05E-11 181.65 1.96
1.0E-6 10.0 198.45 2.65 808 2.97 3.81E-11 393.27 1.98
EXEULER on 8 processors
1.0E-1 1.0 2.73 1.60 7 2.14 8.37E-3 11.21 4.11
1.0E-2 1.0 5.32 2.16 10 2.63 8.26E-4 20.56 3.86
1.0E-3 1.0 7.59 3.12 14 3.09 1.07E-4 29.17 3.84
1.0E-4 1.0 9.92 2.53 21 4.29 2.54E-6 41.83 4.22
1.0E-5 1.0 17.55 3.58 34 472 2.78E-5 74.45 4.24
1.0E-6 1.0 33.33 4.96 63 5.13 2.68E-7 140.98 4.23
1.0E-1 10.0 5.29 3.16 14 2.14 1.69E-6 20.94 3.96
1.0E-2 10.0 9.10 4.66 19 2.41 1.75E-7 35.56 3.91
1.0E-3 10.0 11.61 4.83 24 2.95 3.51E-9 46.23 3.98
1.0E-4 10.0 18.61 7.04 38 3.68 8.15E-10 75.49 4.06
1.0E-5 10.0 29.72 8.99 55 4.26 2.68E-11 122.20 4.11
1.0E-6 10.0 50.26 10.16 92 4.77 5.54E-12 209.74 4.17

As can be seen from the tables, the extrapolation code is a lot faster
than BESOLVER, particular for tight tolerance. The speedup predicted
previously (for explicit extrapolation method on ODE’s) is 2 for 4 processors
(of which only 3 slave processors are integrating) and 4 for 8 processors. The
speedup actually achieved is about 2 on 4 processors, and around 3 to 4 on
8 processors.

When more than 8 processors are used, the algorithm has a maximum
order of over 7 and this is rarely necessary for the tolerances of practical
interest. Thus the results are not shown here.

3 CONCLUSIONS

In this work the parallelism within the extrapolation method is explored.
It is found that the method is suitable for small number of processors and
speedups up to 4 can be achieved.

The advantage of the parallel extrapolation method is that the compu-
tation/communication ratio are high. Such a coarse grain parallelism makes
it suitable not only for parallel computers, but also for implementation on
work station clusters. The method also performs well for tight tolerances.

Load balancing is difficult, due to the fact that function evaluations are
not very expensive compared with linear system solving and the fact that
prediction of the cost of nonlinear equation solving is virtually impossible.

As the parallelism exploited is within the method itself and is inde-
pendent of the underlining physical systems, the method presented is not
restricted to small systems. It is planned to explore the use of the extrap-
olation code for more complex systems, which would make the parallelism
more coarse grained.

Acknowledgement This work is sponsored by ICI PLC through a collab-
orative project with the Advanced Research Computing Group at SERC
Daresbury Laboratory.

References

[1] Special issue: parallel methods for ordinary differential equations, Ap-
plied Numerical Mathematics 11 (1993).

[2] Bellen, A. and M. Zennaro (1993), in [1], 1-2.

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Cofer, H. N. and M. A. Stadtherr, Hybrid direct/iterative sparse ma-
trix techniques for process simulation, AIChE Annual Meeting, San
Francisco (1994).

Duff, I. S., A. M. Erisman and J. K. Reid, Direct methods for sparse
matrices, Oxford University Press, London (1986).

Moe, H. I. and T. Hertzberg, Advanced computer architectures applied
in dynamic process simulation: a review, Computers Chem. Engng. 18,
S375-S384 (1994).

Paloschi, J., Steps towards steady state simulation on MIMD machines:
solving nonlinear equations, paper 223c, AIChE Annual Meeting, San
Francisco (1994).

Saad, Y. and M. Schultz, GMRES: a generalized minimal residual al-
gorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat.
Computing 7. 856-869 (1986).

Secchi, A. R., M. Morari and E. C. Biscaia Jr, The waveform relax-
ation method in the concurrent dynamic process simulation, Computers
Chem. Engng. 17, 683-704 (1993).

Skjellum, A., Concurrent dynamic simulation: multicomputer algo-
rithms research applied to ordinary differential-algebraic process system
in chemical engineering, Ph. D. Thesis, California Institute of Technol-
ogy, Pasadena, CA. (1990).

Vegeais, J. A. and M. A. Stadtherr, Vector processing strategies for
chemical process flowsheeting, AIChE Journal 36, 1687-1696 (1990)

Zitney, S. E., L. Brull, L. Lang and R. Zeller, Plantwide dynamic sim-
ulation on supercomputers: modeling a BAYER distillation process,
Presented at FOCAPD’94, Snowmass Village, CO, July 10-15 (1994).

Zitney, S. E. and M. A. Stadtherr, Frontal algorithms for equation-
based chemical process flowsheeting on vector and parallel computers,
Computers Chem. Engng. 17, 319-338 (1993)

