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Abstract

The problem of partitioning unstructured meshes for parallel computing is con-
sidered. Four existing algorithms as well as a new hybrid algorithm are tested.
The numerical results favour the recursive spectral bisection algorithm and the
hybrid algorithm. A generalisation of the recursive spectral bisection algorithm

to deal with an arbitrary number of processors is discussed
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1. Introduction

The numerical solution of partial differential equations usually involves di-
viding up the physical domain into small elements or volumes. To solve the
problem on a distributed memory parallel computer, the mesh should be further
decomposed into subdomains, the number of which usually corresponds to the
number of processors, and the problem on each subdomain is then assigned to
a unique pProcessor.

The problem now is how to decompose the mesh into subdomains so that
each processor has about the same number of elements (load balancing) and the
communication costs between processors are minimized.

For a 2-D problem the need for communication arises because the solution
within a given element requires information from neighboring elements that
share edges, or perhaps points. Thus two processors need to communicate with
each other if their subdomains share edges or points.

To simplify the problem it is assumed that the time taken to send data
from one processor to any of the others depends only on the quantity of the
data. The problem is then equivalent to partitioning the communication graph
of the mesh into subdomains of roughly equal size such that the partition cuts
the least number of edges of the graph. Assuming that only elements sharing
edges with each other need to communicate, then the graph to be partitioned
is the dual graph, otherwise if elements sharing edges as well as points need to
communicate, then the graph is the true communication graph. Figure 1 shows
a mesh, its dual graph and its true communication graph.

When there are only two processors, the graph partitioning problem be-
comes a graph bisection problem, where a graph G = (V, E) is given with ver-
tices V and edges E, it is required to find a partition V = Vi |JV; such that

Vi Va2 =0, |Vi] >~ |V3| and the number of cut edges |E.|:

|Ec| =|{h | h € E;h = (v1 v2); v1 € V4, v € Va}|



is minimized. Here for a set S, |S| is the number of elements in the set.

The graph bisection problem has been studied before by many authors
(see, e.g., [4], [5]) in the context of graph theory as well as VLSI layout. The
advance in parallel computing renews the interest in the problem, making it
now a very active subject of research. The graph bisection problem is found to
be an NP hard problem, so there are no known algorithms that can find the
exact solution to the problem in polynomial time. Therefore most of the graph
bisection methods seek an approximation to the optimal partition.

To partition a graph into more than two subgraphs, most of the graph
partitioning algorithms recursively bisect the graph into 2,4,...,2¢ subdomains
of approximately equal size. In this paper four recursive bisection algorithms are
studied, including: the recursive coordinate bisection (RCB) (see, e.g., [8]), the
recursive graph bisection (RGB) (see, e.g., [8]), the recursive spectral bisection
(RSB) (see, e.g., [6], [8], [11]) and a heuristic algorithm MINCUT (see, e.g.,
[7]). A hybrid algorithm which combines the RGB and MINCUT algorithm
is proposed and tested. Numerical results show that among the four existing
algorithms, the RSB algorithm is the best. The hybrid algorithm is also found
to be very competitive.

In Section 2 the four algorithms are briefly introduced. In Section 3 the
performance of the algorithms is compared on some mesh examples and the
hybrid algorithm is introduced. Section 4 summarises the numerical findings

and discuss an extention of the algorithms to arbitrary number of subdomains.

2. Graph Partitioning Algorithms

Recursive coordinate bisection (RCB) algorithm (see, e.g., [8]) is the most
intuitive graph partitioning algorithm. Since in practice all elements are within
a physical domain and have some coordinates associated with them, the RCB
algorithm partitions the communication according to the coordinates. In the

2-D case it divides the graph into two halves according to the z-coordinates of



the vertices, then further into four according to the y-coordinates, etc.. This
works well when the mesh is evenly spread over a simple domain. Otherwise
it can create long boundaries with disconnected subdomains. Figure 2 shows
the result of applying the RCB to a mesh with 788 elements. It creates 142
interboundary edges.

One of the reasons for the inefficiency of RCB is that it does not use any
connectivity information about the graph. The recursive graph bisection (RGB)
algorithm (see, e.g., [8]) tries to remedy this. Assume that the graph is connected
and define the distance between two vertices as the length of the shortest path
connecting the two. The RGB algorithm first finds the two vertices that are
furthest apart. Then, starting from one (the root) of the vertices, the half of
the vertices that are closer to the root forms one subdomain, the rest forms
the other. This process is then recursively executed on the subdomains. Figure
3 shows the result of applying the RGB algorithm to the 788 element mesh,
resulting in 142 shared edges.

The recursive spectral bisection (RSB) algorithm (see, e.g., [6], [8], [11])
is based on the following consideration. Assume that there are n vertices in
the graph numbered 1,2,...,n. Each vertex of the graph is assigned a value of
either 1 or —1, and the value assigned to vertex z is denoted by z;. This creates
a bisection of the graph in which the vertices having value 1 form one subdomain
and those with value —1 form the other. Clearly the number of shared or cut
edges resulting from the bisection is

Bl = Yo~ 2, 1)

Aad]
where 7 <> 7 means that there is an edge connecting the vertices 7z and 5. In
order to keep the load balanced each of the two subdomains is required to have
the same number of vertices. Thus the sum of all the values associated with the

vertices is zero, that is

z; = 0. (2)

n
1=



The problem of minimising the communication cost for the bisection is equivalent
to minimising (1) subject to (2) with z; taking the value of either 1 or —1. This
is an integer programming problem which is difficult to solve when the number
of vertices n is large. Ignoring the integer constraints, the quadratic (1) can
just be minimised subject to the linear constraint (2). This gives a continuous
minimisation problem, but without an extra constraint the solution is simply
the zero vector. Remembering that when all the variables takes the value 1 or
—1, the sum of the squares should be n, the number of vertices giving the extra

constraint

ot —n. (3)
1

n

1]

The quadratic (1) can now be minimised subject to (2) and (3).

The quadratic (1) can be written as
1 T
|EC| = Zw Lz, (4)

where z = (z;) is the vector composed of all the values to be assigned to vertices
and L is an n X n matrix known as the Laplacian matrix of the graph. It has
the simple form
-1, if 1473, 1o7,
L;; = ¢ deg(s), if 2=7,
0, otherwise.

Here deg(z) is the degree of the vertex i, defined as the number of edges connected
with the vertex z. The matrix L satisfies Le = 0 with e the vector of all ones.

Applying the necessary condition for the constrained minimisation problem gives
Lz = pe + Az, (5)

with g and A two Lagrange multipliers to be decided. Multiplying both sides of
(5) with e gives p = 0. Thus z has to be an eigenvector of L and the number

of cut edges is |E.| = %n)\. In order to minimise the number of cut edges, z



needs to be the eigenvector of the smallest eigenvalue of L that satisfies the two
constraints (2) and (3).

The matrix L is positive semi-definite with smallest eigenvalue A\; = 0 and
corresponding eigenvector e. Clearly e is not a solution to the problem since it
does not satisfy the load balancing constraint (2). If the graph is connected, then
it can be shown that the next smallest eigenvalue A, is positive (see [5]). Any
eigenvector associated with this eigenvalue satisfies (2) because it is orthogonal
to the first eigenvector e. It will also satisfy (3) by proper scaling, thus it will be
the solution of the constrained minimisation problem. This eigenvector gives a
value for each vertex of the graph, and the graph can be bisected by separating
those with smaller values from those with greater values. The procedure can
then be repeated on the subdomains. This gives the RSB algorithm. In practice
this algorithm almost always gives connected subdomains if the original graph is
connected, however there can be exceptions (see Section 3 for an explanation).
Figure 4 shows the result of applying the RSB algorithm to the 788 element
mesh, the partition has 108 shared edges. In this case all the subdomains are
connected.

The MINCUT algorithm (see, e.g., [7]) is based on a heuristic of Kernighan
and Lin ([4]). It is again a recursive bisection algorithm. Starting with a load
balanced bisection, it first calculates a table recording the changes in the number
of edges cut for each vertex that results from moving that vertex from one half of
the graph to the other. Then each iteration it moves the vertex which will reduce
most the number of cut edges from the side in surplus to the side in deficit. This
vertex is then locked and the table recording the changes of the number of edges
cut is updated. The procedure is repeated until the rest of the unlocked vertices
are locked. The iterative procedure is restarted with the bisection corresponding
to the largest reduction in the number of edges cut. Should the iterative process
not result in any reductions then the algorithm is terminated and the resulting

subdomains are further bisected in the same way. The initial bisections are



generated randomly and the final result is very dependent on the initial choice.
Figure 5 shows the best result among 3 runs of the algorithm on the 788 element

mesh, it has 133 inter boundary edges.

3. Numerical Results

The above four algorithms have been implemented on a Convex C220 com-
puter in Fortran. Before presenting the results some details of the implementa-
tion of the RGB and RSB algorithms are given.

For the recursive graph bisection (RGB) algorithm, it is necessary to find
two vertices of a graph with the largest distance between them. This is done
approximately by picking any vertex first as the root, and assigning its neighbour
vertices as level 1, then the neighbours of neighbours as level 2, etc., until every
vertex is assigned a level value. Taking the vertex with the greatest level value
(denote the value as l;,,2) as a new root, the procedure is repeated until /42
does not increase. The last root is taken as the root for the RGB algorithm and
the vertices are bisected according to their level values relative to the root. If the
graph is not connected, then when the level sets are assigned, at some stage it
will be found that all the neighbours of a vertex have already been assigned level
values, but the vertices of the graph have not been exhausted. An artificial edge
is created linking an assigned vertex with a vertex that has not been assigned
a level value. In this way the graph will finally be connected. Of course a cut
through the artificial edges is not counted in the edges cut |E.|.

For the recursive spectral bisection (RSB) algorithm, it is necessary to find
the second smallest eigenvalue and eigenvector of the matrix L. This is done
using the Lanczos algorithm, which is an iterative process. Each iteration in-
volves multiplication of L with a vector. Because of the sparsity of the matrix
L, this multiplication can be done cheaply in about O(mn) operations with m
the largest degree of the vertices. Since the smallest eigenvalue of L is known

to be 0 with e the associated eigenvector, this information can be used to speed



up the algorithm. Following Pothen, Simon and Liou ([6]), the vector e is used
to deflate the Lanczos algorithm by orthogonalizing the Lanczos vectors against
e. Note that, theoretically, as long as the initial Lanczos vector is orthogonal
to e, all the subsequent Lanczos vectors will be orthogonal to e too, and our
numerical experience does not show any exception. However to be safe, in all
the subsequent numerical results the algorithm is implemented with orthogo-
nalization at each iteration. The maximum iteration number for the Lanczos
algorithm is set to be 500, and the stopping criterion for the algorithm is set to
be |[Lz — Az|| < € with e = 107 and A, z the current estimates of the second
smallest eigenvalue and the normalized eigenvector. The Lanczos algorithm is
coded in double precision.

When the graph is disconnected, the second eigenvector may not be a good
separator for the graph for the following reasons. Suppose the graph G has two
disconnected components G, and Gy, then by a suitable change of ordering, the
matrix L can be written as a block diagonal matrix with two diagonal elements
L, and L, the Laplacain matrices of G, and G. Both matrices have 0 as
their smallest eigenvalues. Assume A,, Ay and z,, z; are their second smallest
eigenvalues and eigenvectors respectively, and A, is smaller than A, then z =
(z4,0)T is the eigenvector associated with the second smallest eigenvalue of L.
Clearly z is not a good separator for partitioning the graph because of all the
zero elements in it. For practical problems the physical domain considered can
indeed be disconnected, and even if the initial graph is connected, the subgraphs
resulting from bisections can still be disconnected. Figure 1 (b) is a simple
example with 4 vertices, any load balanced bisection of the graph will have to
create disconnected subgraphs. In addition, since the Lanczos algorithm is an
iterative process, disconnected subgraphs can also be created if the solution is
not a good approximation of the actual eigenvector.

Therefore before starting the Lanczos algorithm a routine which ensures

the connectivity of the graph is executed. This is done in a similar manner to



the RGB algorithm.

The four algorithms have been tested on 4 meshes, two of them (with 788
and 3564 elements) are generated from a package DIME ([12]), the 771 mesh is
supplied by C. Walshaw ([10]) and the 5520 mesh is from DYNA3D ([1]). The
first three are 2-D meshes and the last is a 3-D mesh. For each mesh, both its
dual graph as well as its true communication graph (this is not available for
the 771 mesh) are partitioned. The graphs are partitioned into 16 subdomains.
Table 1 reports the edges cut |E.| as well as the CPU time (in seconds) for
each algorithm on the 7 problems. Here |E,| is taken to be the edges cut in
the dual graph by the partition, in other words the number of shared edges
(shared surfaces in 3-D cases) between subdomains, so as to have a unique
index to compare the results of partitioning using dual graphs and using true
communication graphs. Of course in doing so we bear in mind that this is more
to the advantage of the results using the dual graph.

The MINCUT is sensitive to the randomly generated initial bisections. The
algorithm was run for three times and the best edges cut and the total CPU
time are reported.

From Table 1 it is clear that the simple recursive coordinate bisection (RCB)
algorithm takes little time, but the numbers of edges cut is relatively high com-
pared with other algorithms. The recursive graph bisection (RGB) algorithm
takes the least time, it is comparable with or even worse than RCB on 2-D
problems, but much better on 3-D problems, which confirms an observation of
Simon ([6]). The MINCUT gives very competitive numbers of edges cut, but
suffers from very long execution times. The recursive spectral bisection (RSB)
algorithm gives very good results on edges cut in reasonable times. Therefore
comparatively this is the best algorithm of the four.

The edges cut for the partitions using the dual graph and using the true
communication graphs do not show much difference. For most algorithms using

the true communication graphs gives much higher CPU time. Therefore it may



be preferable to use dual graphs for partitioning. Incidentally for recursive spec-
tral bisection (RSB), dual graphs usually take more iterations for the Lanczos
algorithm to converge, which accounts for the reverse order of CPU time for the
algorithm on the 788 mesh.

The very competitive results on edges cut for the MINCUT suggest the pos-
sibility of trying to modify the algorithm to reduce the CPU time. Randomly
generated initial bisections have very high numbers of edges cut, and the MIN-
CUT algorithm takes many iteration to reduce the number of edges cut, which
results in long CPU times. It is natural to try to start with a reasonably good
initial partition and to improve upon it using MINCUT. On the other hand this
initial partition needs to be generated quickly, otherwise the algorithm still can
not compete with the RSB algorithm. From Table 1 it is clear that it takes
very little time to bisect graphs by finding the root and diameter of a graph,
as RGB does. Thus at each recursive step, a sensible strategy would be to find
first a bisection of the graph using the RGB algorithm, then improve upon it
using the MINCUT algorithm. The resulting algorithm is called MINGRAPH.
Figure 6 shows the results of using the algorithm on the 788 mesh, resulting in
116 shared edges. The full results for the hybrid algorithm are reported in the
last column of Table 1. The MINGRAPH algorithm is better than the recursive
spectral bisection algorithm in terms of the number of edges cut in 6 out of the

7 cases and is faster in 5 out of the 7 cases.

4. Discussions

In this paper four graph partitioning algorithms as well as a hybrid algo-
rithm has been tested, the recursive spectral bisection and the hybrid algorithm
are found to be more efficient than the others.

All the algorithms discussed here are recursive bisection algorithms. How-
ever two recursive optimal bisections do not necessarily generate an optimal

quadrisection. Direct quadrisection even octasection using two or three eigen-



vectors of the Laplacian matrix are being explored ([2]). For quadrisection,
instead of associating each vertex i of a graph with a scalar, it can be associated
with a vector (z;,y;)T with z; and y; taking the values 1 or —1 and producing
four different vectors. For a quadrisection, the communication cost to be min-
imised is found to be %(af:TL:c +yT Ly), the problem can be made continuous by

Te =n,yTy =n

adding the constraints ez = 0, eTy = 0 (load balancing); =
and z7y = 0. By applying the necessary condition of constrained minimisation
and some manipulation of linear algebra it is possible to show that the minimum
is reached if the n x 2 matrix (z,y) is an orthogonal transformation of the ma-
trix composed of the second and third smallest normalized eigenvectors of the
Laplacian. The vectors z and y can then be used as separators for partitioning
in a suitable way ([2]).

It has been assumed that the data communication times between proces-
sors are the same, yet this is generally not true. Heterogenous data transmission
costs can be accommodated by first of all finding a partition, then each subgraph
is assigned to an initial processor (a colour) and the colouring is changed in a
systematic way to reduce the communication cost (see [7] for some discussion).
However on in many cases the difference in communication times are not im-
portant compared with the startup costs and the costs for the message passing
itself ([9], [3]).

Since in practice the mesh is usually changed adaptively according to some
gradients, it is also necessary to look at efficient dynamic graph partitioning
algorithms, some possibilities have been suggested ([10]).

Once the partitioning is done, it is necessary to give a scheme for optimis-
ing the scheduling of message passing. This problem will be discussed in the
accompanying paper [3].

Finally, all the five algorithms discussed in Sections 1 to 3 partition the
meshes into numbers of subdomains which are powers of two. In the following

a procedure is suggested for the case when the number of processors available



is not a power of two. The same process could equally well be used to partition
grids into heterogeneous systems where the nodes have different speeds.

In this case a modification to the algorithms is needed, that is, instead
of the mesh being partitioned into equal halves each iteration, it should be
partitioned into two parts with appropriate numbers of elements in each parts.
For example, partitioning a mesh of 788 elements into 15 subdomains could

result in the following allocations of numbers of elements

>~

53, ..., 53, 52, ..., 52. (6)

In the first iteration the 788 elements are divided into two parts, the first part
having 7 portions, i.e. 53 X 7 = 371 elements, the second part having the 8
remaining portions, i.e. 53+ 52 X 7 = 417 elements. Next time the 371 elements
will be further divided into 53 x 3 = 159 elements and 53 x 4 = 212 elements;
the 417 elements be divided into 53 + 52 x 3 = 209 elements and 52 x 4 = 208
elements, and so on. This procedure is illustrated in Figure 7.

All the five algorithms can be used to partition a mesh into two parts
with unequal numbers of elements in each parts. Take the recursive spectral
bisection algorithm for example. It was shown in Section 2 that if the mesh is to
be partitioned into two equal halves, then the RSB algorithm can be motivated
by minimising (4) subject to the constrains (2) and (3). In order to partition n
elements into two parts with one having an (0 < a < 1) elements and the other
having (1 — a)n elements, each element is assigned with a value of either 1 or —1.
The problem of minimising interboundary edges becomes that of minimising (4)

subject to constraints (3) and

Zmi =an— (1 —a)n =(2a — 1)n. (7)

Here z; is either 1 or —1. If the integer requirement is relaxed and replaced
by (3) instead, then the necessary condition for the constrained minimisation
problem gives

Lz = pe + Az. (8)



Multiplying both sides of (8) with e gives
p=(1-2a)A.

Since Le = 0, defining y = z + (1 — 2a)e, (8) can also be written as

which for a = % reduces to the standard bisection result discussed in Section 2.
Thus using similar arguments to those presented in Section 2, the vector y = z+
(1 — 2a)e should be the second smallest eigenvector of L. Once the vector y has
been calculated, the mesh can be partitioned into two unequal parts according
to the vector z = y — (1 — 2a)e, or simply according to y since each element of
(1 — 2a)e is the same.

In Table 2 the results of using the RSB algorithm to partition the dual graph
of the mesh with 788 elements into various numbers of subdomains are listed. In

general the number of shared edges increases about linearly to sublinearly with

the number of subdomains, as expected.
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Table 1 comparison of five partitioning algorithms*

Graphs | RCB | RGB | RSB |MINCUT |MINGRAPH
Dual—788 | 142/3 | 142/1 | 108/20 | 133/26 116/4
True—788 | 142/4 | 143/3 | 117/18 | 97/55 104/10
Dual-771 | 232/1 | 201/1 | 150/14 | 188/26 148/4
Dual—3564| 293/43 | 334/3 | 261/154 | 500/697 | 233/73
True—3564| 293/51 | 359/13 | 288/162 | 263/1096 | 243/181
Dual—5520|2876/110| 1737/8 |1000/264|896/1702| 822/302
True—5520 |2876/126|1117/26| 987/489 | 903/2648 | 861/270

* The result is in the form |E.| / CPU time (in seconds).




Table 2 partitioning using RSB: the number of shared edges |E.| against the

number of ProcCessors nprocessor

nprocessor | |E.| |nprocessor| |E.|
2 29 18 129
3 39 19 128
4 43 20 136
5 57 21 144
6 65 22 152
7 60 23 154
8 69 24 165
9 73 25 165
10 78 32 181
11 89 48 236
12 91 64 282
13 96 80 334
14 105 96 358
15 118 112 410
16 108 128 433
17 121




