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Fig. 1. The Dow Jones Industrial Average (DJIA) from 1897 to 2011. Left: rendered as sequential small multiples, ordered by year.
Right: CorrelatedMultiples, in a spatially coherent layout based on similarity. Charts of the years 2008 and 1920 are similar and are
placed close to each other at the top of CorrelatedMultiples (right), but are far apart in the sequential small multiples (left).

Abstract—Small multiples are a popular method of summarizing and comparing multiple facets of complex data sets. Since they
typically do not take into account correlations between items, serial inspection is needed to search and compare items, which can
be ineffective. To address this, we introduce CorrelatedMultiples, an alternative of small multiples in which items are placed so that
distances reflect dissimilarities. We propose a constrained multidimensional scaling (CMDS) solver that preserves spatial proximity
while forcing items to fit within a fixed region. We evaluate the performance of CMDS in comparison with competing methods,
and demonstrate the effectiveness of CorrelatedMultiples for visual search and comparison through a controlled user study and two
real-world applications.

1 INTRODUCTION

As data from public, commercial, and private sources become increas-
ingly accessible, and the types of information gathered by social net-
works such as Twitter and Facebook expand, big data are flooding in at
a rate never seen before. Large pools of data are being applied to deci-
sion making almost in all business sectors. For example, retailers such
as Tesco and Fresh Direct gather and analyze transaction data to make
decisions about pricing, promotions, and shelf allocation. Ford Motor,
PepsiCo, and Southwest Airlines analyze consumer postings on social-
media sites to quickly gauge the impact of marketing campaigns, and
to understand consumer sentiment about their brands. Visual analy-
sis of similarities and contrasts among data items can help analysts
to monitor, explore and make sense of large amounts of information
more easily, hence providing a foundation for better decision-making.
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Small multiples, described by Jacques Bertin and popularized by
Edward Tufte, allow one to examine multiple facets of complex data
sets, and support visual comparisons and tracking of dynamic objects
[4, 31]. They have been applied to monitoring and analyzing data-
intensive processes such as system management, quality control, med-
ical record analysis, and large-scale industrial and engineering oper-
ations. Small multiples alleviate overplotting and occlusion that may
occur when objects are too close and overlap. Although lining up mul-
tiple visualizations allows a viewer to compare plots more easily, as
the number and complexity of the items increases, the effectiveness
of small multiples quickly diminishes. This is because the perceptual
hindrance that forces the user to examine each individual item sequen-
tially rather than obtain a quick overview of the whole data would
make the visualization hardly any better than a simple data table [19].
Figure 1 (left) shows an example of small multiples of the Dow Jones
stock market index from 1897 to 2011. It is hard to tell what patterns
predominate across the years. To amend this, it is highly desirable to
have a small-multiples visualization that can better organize the mul-
tiple plots based on the correlation in underlying data.
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In this paper, we propose CorrelatedMultiples, a spatially coherent
visualization based on small multiples. The goal of CorrelatedMul-
tiples is to exploit similarity among a set of items to determine their
layout. By incorporating similarity into the spatial layout, viewers can
better judge the overall qualitative characteristics of the data set [19].
Following the idea of standard multidimensional scaling (MDS) [23],
we model the relationship of items as a similarity graph, and embed
the items so that proximity reflects similarity. The similarity between
items is measured by domain-specific metrics, and related items are
discovered using clustering algorithms. To lay out the correlated items
so that they fit within some fixed display space, we propose a Con-
strained Multi-Dimensional Scaling (CMDS) model. The final layout
is further adjusted to improve its overall appearance by consistent hor-
izontal and vertical alignment.

CorrelatedMultiples allow users to identify similarities and differ-
ences in the data more effectively, because related items are placed
nearby, and unrelated items are pushed farther away from each an-
other. Aggregates and anomalies can be discovered and examined
based on the items’ spatial locations, since adjacent items are likely to
be similar, making abnormal events easier to identify. We conducted
a controlled user study that shows the effectiveness of CorrelatedMul-
tiples in comparison with the conventional sequential small multiples
for searching similar items, and demonstrated how the CMDS method
outperforms competing methods in preserving spatial proximity. We
also present applications of CorrelatedMultiples in two domains: dis-
playing stock market trends in financial market analysis, and Madden-
Julian oscillation in climate modeling. The main contributions of this
work are:

• We introduce CorrelatedMultiples, which encode data similarity
using spatial proximity among items in small multiples.

• We propose an optimization algorithm, based on constrained
multidimensional scaling, to create CorrelatedMultiples.

• We evaluate the effectiveness of CorrelatedMultiples through a
controlled user study and two real-world applications.

The rest of this paper is organized as follows. In the next section we
briefly review related work. Section 3 describes the design of Correlat-
edMultiples. Section 4 describes the Constrained Multi-Dimensional
Scaling optimization algorithm. In Section 5 we evaluate the proposed
approach by means of a user study and a quantitative assessment. Sec-
tion 6 presents two applications. Finally, Section 7 summarizes the
results.

2 RELATED WORK

Small multiples, introduced by Jacques Bertin [4] and Edward Tufte
[31], are widely used in both the scientific literature and the mass me-
dia. As the name suggests, a set of charts are arranged in a grid to
encourage comparison. Bertin further considered the possibility of
reordering the items to highlight interesting relationships. Javed et
al. [21] showed that small multiples are more efficient than shared-
space techniques for comparisons across time series with a large visual
span. Archambault et al. [1] found that small multiples gave signifi-
cantly faster performance than animation for understanding dynamic
graphs. Robertson et al. [27] also showed that small multiples are
more accurate and effective than animation for trend analysis. Woods
et al. [34] organized small multiples in a grid using a spatial layout
adapted from spatially ordered Treemap by Wood and Dykes [33].
However, according to the evaluation by Eppstein et al. [13], this
approach can result in a relatively large displacement. The same
study shows that grid map [13], through point set matching outper-
forms gridded spatially ordered Treemap. However, optimal matching
is computationally expensive with the best known algorithms taking
O(n6log3n) time. Our algorithm can produce grid layouts comparable
in quality to grid map, but in much less time.

A recent study showed that grouping significantly improves visual
search task performance [19]. However, grouping similar items while

efficiently utilizing the display space is non-trivial. In most space-
filling visualization techniques such as Treemap [29] and Bubblemap
[3], relative positions of cells does not reflect similarity. Itoh et al. [20]
proposed a hybrid space-filling and force-directed layout to visualize
multiple-category graphs. Unfortunately, some space between groups
is wasted. Our proposal attempts to utilize the available space as much
as possible, while at the same time incorporating similarity among
items to enhance comparison.

For showing similarity among a collection of objects, multidimen-
sional scaling (MDS) [23] and graph based techniques play a promi-
nent role in various fields, and are relevant in many application ar-
eas [15, 16]. The most common formulation of MDS is a stress
model [22], which can be solved by majorization [16]. Our solver
also uses a Delaunay triangulation as scaffolding that is combined
with multidimensional scaling, to maintain the global structure of a
layout while removing overlaps. This is similar to the PRISM ap-
proach [15], except PRISM does not account for display space con-
straints. Work on constrained graph layout appeared as early as the
1990’s [24, 30]. Dwyer and Koren [8] proposed the DIG-COLA al-
gorithm for directed graph drawing. Their model also incorporates a
notion of hierarchy energy, which respects the orientation of directed
edges. Dwyer et al. [9] attempted to solve constrained graph layout
problems with a combination of stress majorization and constrained
programming techniques. Constrained optimization also provides the
foundation for Dunnart, a constraint-based graph drawing tool [11].
Further work by Dwyer [2, 7, 12] considered fast satisfaction of simple
constraints such as linear or circular constraints. Of these, the closest
to our work is Dwyer’s [9]. The main difference is that Dwyer [9]
aims at satisfying orthogonal ordering constraints using a sophisti-
cated quadratic programming algorithm. Our main objective is to sat-
isfy shape constraints, and our approach is easier to implement — we
coded a prototype, including Delaunay triangulation, in 614 lines of
JavaScript.

3 DESIGN OF CORRELATEDMULTIPLES

This section presents the CorrelatedMultiples design. We outline a set
of goals and potential challenges, explain how the proposed design
addresses these, and give an overview of a prototype system.

3.1 Design Methodology

The idea behind CorrelatedMultiples is to retain the key advantages of
small multiples: (1) displaying small instances of data with a consis-
tent representation, allowing side-by-side visual comparison of multi-
ple items; (2) avoiding occlusion and clutter, hence suffering less from
over-plotting. (3) making effective use of display space compared with
non-space-filling visualizations, such as graphs and maps. In addition,
CorrelatedMultiples enhance small multiples by (4) exploiting simi-
larity to determine the spatial proximity of the items.

One of the challenges addressed in this study is to allow the plotting
of spatially coherent small multiples in a constrained space. Also, in
most of the space-filling visualizations (such as Treemap [29]), small
multiples do not encode data similarity in the layout – similar objects
can be placed far apart (such as the charts for the year 1954 and 1995
in Figure 1 (left)), which makes it harder to compare and track the
trend of data.

To tackle this challenge, we first model the relationship between
small multiples as a similarity graph. The similarity between two items
is measured by some appropriate domain-specific distance function on
the underlying data. Then, we embed the items in the display area so
that spatial proximity reflects similarity. Correlated items are discov-
ered by clustering algorithms on the similarity graph, or on the em-
bedding. To lay out the correlated items within the available display
space, while maintaining spatial proximity, we propose a constrained
multidimensional scaling model described in Section 4. Also, the lo-
cations of the items are aligned horizontally and vertically to improve
the overall appearance.
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Fig. 2. Overview of the CorrelatedMultiples pipeline: (a) selecting data of interest, analyzing similarity, and finding a similarity-based clustering;
(b) placing data items based on similarity (clusters are indicated by color); (c) computing a proximity graph by Delaunay triangulation to constrain
relative positions of items; (d) adjusting the layout by the Constrained Multi-Dimensional Scaling (CMDS) algorithm; (e) aligning the final layout
horizontally and vertically.

3.2 System Overview
Figure 2 shows an overview of our prototype to compute Correlated-
Multiples. Depending on the available display space and the size of
each display item, we first select a subset of the most important items
that can fit within the display, compute their similarity, and cluster the
items (Figure 2(a)). Then the items are assigned initial coordinates by
multidimensional scaling (Figure 2(b)). Next, a proximity graph is de-
rived from a Delaunay triangulation of the items (Figure 2(c)). Then a
Constrained Multi-Dimensional Scaling (CMDS) model is applied to
remove overlaps, while preserving spatial proximity and fitting the vi-
sualization to the available display space (Figure 2(d)). Finally, items
in the layout are aligned horizontally and vertically to improve the
overall appearance (Figure 2(e)).

4 CONSTRAINED MULTIDIMENSIONAL SCALING ALGORITHM

In this section, we describe the Constrained Multi-Dimensional Scal-
ing (CMDS) algorithm for CorrelatedMultiples. The proposed algo-
rithm is also applicable to general graph visualization.

4.1 Model Formulation
In graph drawing, stress minimization, based on multidimensional
scaling, has been applied to achieve predefined target lengths in high
quality layouts. The full stress model assumes there are springs be-
tween all node pairs. Given a 2-D layout where node i is placed at
point pi, the energy of this spring system is

∑
{i, j}∈V

wi j(‖pi− p j‖−di j)
2, (1)

where di j is the ideal (typically, graph-theoretic shortest path) distance
between nodes i and j, and wi j is a weighting factor, typically 1/d2

i j.
A layout that minimizes the total stress is considered optimal. We
formulate the CMDS model from this basic stress model.

Given a proximity graph G = (V,E), with V the set of nodes and E
the set of edges, and a display region Γ, the goal is to find coordinates
pi for each node i ∈ V , such that: (1) there is no overlap between any
nodes {i, j} ∈ V ; (2) each edge (i, j) ∈ E is close to its ideal length;
(3) each pi is inside Γ. The first condition, no-overlap, is needed for
readability and aesthetics; the second preserves spatial proximity of
nodes in the graph. At the same time, the graph should fit in Γ to
utilize the available space without being scaled down so much that it
reduces readability. In small-multiples, nodes are not just points but
have (the same) finite area, so the actual display area Γ must be shrunk
by the margin of half the node’s width and height, so that every node
can be fully displayed as long as its center lies within Γ. With these
conditions in mind, we propose the CMDS model

min ∑
(i, j)∈E

wi j(‖pi− p j‖−di j)
2 +α ∑

pi /∈Γ

(‖pi−Γ(pi)‖)2, (2)

where di j is the ideal distance between nodes i and j, wi j is a weight-
ing factor, α ≥ 0 is a parameter to be determined, and Γ(pi) denotes
the projection of pi to the region Γ – if pi is outside of Γ, the projec-
tion Γ(pi) gives the point on the boundary of Γ that is closest to pi;
otherwise Γ(pi) = pi.

The first term of (2) encodes the stress energy between nodes shar-
ing an edge. The initial value of pi is determined by a standard MDS
embedding, or may be supplied by the user. Subsequently, to maintain
the proximity relation, we follow the PRISM approach [15]: we take a
Delaunay triangulation of the layout, set the graph G to the proximity
graph generated by this triangulation (thus, E is the set of triangula-
tion edges), and solve to preserve node distances along triangulation
edges. The rigidity of the triangulation provides sufficient scaffolding
to constrain the relative positions of the components, and helps pre-
serve the global structure of the original MDS layout. Fortunately, we
only need to consider pairs of nodes that share an edge, which yields
a sparse model that can be solved much faster than a full stress energy
model (as in (1)). For each edge (i, j), the amount of overlap on the
line xi→ x j is denoted by δi j (δi j is set to 0 if no collision is detected),
and the ideal distance is set as

di j = li j +δi j, (3)

where li j is the original distance between node i and j.
The second term of (2) is the stress energy between node i and Γ if

node i is outside of Γ, and can also be written as

α ∑
pi /∈Γ

(‖pi−Γ(pi)‖−0)2, (4)

which sets the ideal distance between node i and its projected point
Γ(pi) to 0. By minimizing this combined stress energy, nodes will be
constrained within Γ as α gets progressively larger, provided that Γ is
large enough relative to the total node area.

Taking the gradient of (2) with respect to pi, assuming that Γ(pi) is
constant, and setting the gradient to zero gives

∑
j: (i, j)∈E

wi j(‖pi− p j‖−di j)
(pi− p j)

‖pi− p j‖
+α(pi−Γ(pi)) = 0. (5)

By algebraic manipulation of (5), keeping linear terms involving pi to
the left and moving the rest to the right of the equation, we obtain the
following iterative scheme

pi←
∑(i, j)∈E wi j

(
p j +di j

pi−p j
‖pi−p j‖

)
+αΓ(pi)

∑(i, j)∈E wi j + α
. (6)

While we could apply a stress majorization method [16] to solve (2),
we chose the above iterative process because it does not require the
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solution of a linear system. This makes it easier to implement in
languages like JavaScript that do not have sophisticated numerical li-
braries. More importantly, by rendering the iterative process, we can
make a visually stable animation, from an initial unconstrained con-
figuration, to the final constrained layout. This is shown in the video
that accompanies this paper.

After N iterations of (6), the layout may still have overlaps and
nodes outside display space. If so, we regenerate the proximity graph
using a Delaunay triangulation augmented with additional edges for
overlapping nodes, calculate ideal edge lengths, and rerun the energy
minimization step. When the total stress no longer decreases, the final
layout is aligned horizontally and vertically using a rounding function:

xa = round((x−w/2)/w)×w+w/2

ya = round((y−h/2)/h)×h+h/2
, (7)

where x and y are the coordinates of the center of a node, w and h are
the width and height of the node, xa and ya are the aligned center of
the node, and the round function gives the integer that is closest to the
input value. We refer to this as the Constrained Multi-Dimensional
Scaling (CMDS) algorithm, shown in Algorithm 1.

Algorithm 1 Constrained Multi-Dimensional Scaling (CMDS)
Input: the coordinates pi of data items; the region Γ.
Construct a proximity graph G by Delaunay triangulation.
repeat

Calculate the ideal distance according to (3) for all edges.
while (iteration < N) do

Update each pi according to (6).
end while
Construct a proximity graph G by Delaunay triangulation.
Augment G with edges from pairs of nodes that overlap.

until (All data items are inside Γ with no overlap)
Align the data items horizontally and vertically according to (7).

To avoid introducing overlaps after the alignment, input nodes are
scaled so that the total sum of their area is sufficiently less than AΓ;
otherwise, the CMDS algorithm has to be rerun to remove the overlap,
which increases running time and may not generate a desirable layout.
For example, if Γ is square (with an area of |Γ|), we can set the area of
each node Ai to

Ai =
|Γ|

(
√
|V |+1)2

. (8)

We now discuss the complexity of the CMDS algorithm. A De-
launay triangulation can be found in O(|V |log|V |) time [14]. A
scan-line algorithm to find all the overlaps can be implemented
in O(l|V |(log |V |+ l)) time [10], where l is the number of over-
laps. A sweep-line algorithm has a similar time complexity (O((l +
|V |) log |V |)) [6]. Because we only apply the scan-line algorithm af-
ter no more node overlaps are found along proximity graph edges,
l is usually a very small number, hence this step can be considered
as having complexity O(|V | log |V |). Calculating ideal distances takes
O(|E|) time, and iteratively solving the proposed model takes O(N|E|)
time when edges for each node are pre-stored. Therefore, overall, Al-
gorithm 1 takes O(c(|V |log|V |+ |E|+N|E|)) time, where c is the to-
tal number of iterations in the outer loop of Algorithm 1. In our im-
plementation (described in the next subsection), N = 20 is generally
enough to achieve acceptable layouts.

4.2 Implementation
We implemented the CMDS algorithm in HTML5 and Javascript.
A demonstration of CorrelatedMultiples generated by CMDS is pre-
sented in a video, at http://vimeo.com/50263134. Because
we did not find a suitable red-black tree library in Javascript for im-
plementing the scan-line algorithm, we substituted a naı̈ve O(|V |2)

node collision detection algorithm. This is reasonable because a typ-
ical computer display of about 1000× 1000 pixels can only fit about
400 objects if we allow each object to be about 50×50 pixels, so |V | is
not that large. For larger |V |, a log-linear collision detection algorithm
such as a scan-line algorithm would still be desirable.
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Fig. 3. Stress-AL Pareto curves showing progression of iteration applied
to 100 nodes in a 1100×1100 pixel screen space: (top) for the number of
inner iterations N in Algorithm 1, too large or too small values will lead to
high stress or poor space utilization; (bottom) for α in (6), large or small
values will result in high stress or poor space utilization.

Several additional parameters need to be defined in an implemen-
tation, such as the number of iterations N in Algorithm 1, and the pa-
rameter α in (6). Our approach is to study the trade-off (Pareto curve)
between stress and display-space utilization, and choose parameters
that yield the best results. We first define the area loss measure (AL)

AL = 1− ∑i∈V Ai

BV + t ∗∑{i, j}∈V Ai∩A j
, (9)

where Ai is the area that node i covers, BV is the bounding box of all
nodes, and t is a penalty factor for node overlaps. This penalty must
be accounted for, because otherwise a layout where every node sits
on the same point would waste the least area. Since overlap removal
is essential for small multiples, we set t = 10 after testing different
values experimentally. The stress with reference to the initial structure
is denoted as

Stress = ∑
(i, j)∈E

wi j(s‖pi− p j‖− li j)
2, (10)

where wi j is a weighting factor, li j is the initial length of edge (i, j),
and s is a scaling factor that minimizes (10)

s =
∑(i, j)∈E wi jli j‖pi− p j‖
∑(i, j)∈E wi j‖pi− p j‖2 . (11)

For each parameter, our goal is to find a value that achieves good space
usage while keeping the stress low.

Given an initial placement, we run CMDS and calculate area loss
(9) and stress (10) for different settings of the number of iterations N in
Algorithm 1 and α in (6). As shown in Figure 3 (top), when the num-
ber of inner iterations N is too small (N = 1), space utilization is poor.
This is because, without enough iterations of (6), the ideal distance
is updated based on a configuration that has not yet converged. Too
many inner iterations (N ≥ 40) might result in higher stress because of
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|V | Time #Iterations (c) Time/Iteration
20 0.05 32 0.001
40 0.05 10 0.005
80 0.28 23 0.012
160 1.56 40 0.039
240 1.78 41 0.043
320 4.67 49 0.095
400 6.22 44 0.141

Table 1. CPU time (in seconds) of CMDS algorithm.

doing too much work to satisfy ideal edge length that were determined
before the inner iteration starts, and most of the overlaps are usually re-
moved after a few iterations. Excessive iterations without rechecking
overlap generally makes layouts that deviate too much from the initial
layout, increasing the stress. Therefore, based on Figure 3 (top), we set
N = 20 to balance stress reduction with area utilization. Figure 3 (bot-
tom) demonstrates the effect of α in (6) with the Pareto curve of stress
and area loss. If α is too small (α = 0.01), we are essentially solving a
conventional sparse stress model without the boundary constraint; on
the other hand, if α is large (α ≥ 0.25), flipping may occur because
of abrupt changes of nodes close to the boundary. Experimentally, we
found that α = 0.1 yields good results.

We applied K-means clustering based on Euclidean distance in the
MDS initial layout. Haroz et al. [19] recently showed that a compro-
mise must be made between the number of nominal categories and the
perceptual complexity of a visualization, and user performance is sig-
nificantly limited beyond 5 categories. Based on their findings and our
experiments, we chose K to be less than 5 for differentiating groups
in CorrelatedMultiples. As an alternative, we also experimented with
modularity clustering [25] on the similarity graph, which gives compa-
rable clustering in general, and automatically determines the number
of clusters. The downside is that with modularity clustering some clus-
ters may become spatially dis-contiguous, due to the uncoupling of the
clustering and layout.

4.3 Performance
To investigate the performance of CMDS, we tested our implementa-
tion in Google Chrome on an i7-2600, 3.4 GHz CPU computer. We
started with 20 to 400 nodes at randomly generated positions. The
CPU time needed for CMDS to converge is shown in Table 1. As the
number of nodes increases, the solver costs more time per iteration. Its
running time is dominated by the naı̈ve node collision detection algo-
rithm mentioned earlier, which has O(|V |2) complexity. Fortunately,
in our case |V | is not expected to be large. Moreover, we render the
solution process as an animation, and we observe that rendering time
dominates the solver’s running time, so our solver’s performance is
satisfactory for a prototype. For larger |V |, implementing a scan-line
algorithm would speed up the solution process considerably, and re-
duce its time complexity to O(c(|V |log|V |+ |E|+N|E|)). (For refer-
ence, the PRISM algorithm [15], on which the CMDS solver is based,
takes a few seconds to remove overlaps in tens of thousand of nodes.)

5 EVALUATION

This section describes a controlled user study that shows the effec-
tiveness of CorrelatedMultiples in comparison with the conventional
sequential small multiples for searching similar items, as well as a
quantitative evaluation that demonstrates how the CMDS method out-
performs competing methods in preserving spatial proximity.

5.1 User Study
We conducted a controlled experiment to evaluate the effectiveness of
CorrelatedMultiples for visual search of similar items, compared with
conventional sequential small multiples. We recruited 12 subjects (10
males, 2 females) having background in computer science or software
engineering. The subjects ranged in age between 24 and 34 years,

with a mean age of 27. Most of the subjects (92%) said they were not
already familiar with the notion of small multiples.

5.1.1 Visualizations and Datasets

We collected a data set of CPU usage from 5144 network devices,
sampled at 5-minute intervals over one day. We plotted the time series
of 288 data points for each device using an area chart, and randomly
selected a subset of the charts to make visualizations with conventional
small multiples (denoted as SM) and CorrelatedMultiples (denoted as
CM). The charts in SM were arranged by device ID in increasing
order, while those in CM are based on data similarity.

To measure similarity in CPU usage, we applied Dynamic Time
Warping (DTW), a technique that non-linearly warps one time series
to the other at a minimum cost. Given two time series, DTW finds
a warping path which minimizes the total distance between the two
series. In our scenario, since the distance between time series should
account for the difference in time, we adapted the DTW algorithm by
incorporating a locality constraint to align each time step with only
its neighboring time steps within a predefined time window w (when
w = 0, the DTW distance is equivalent to the Euclidean distance). We
set w = 12 in our experiments, considering two time series to be very
similar if they have approximately the same pattern within one hour
of time shift. Dynamic programming is then used to find the opti-
mal warping path. Based on the similarity relationship obtained from
DTW, we applied CMDS to generate CorrelatedMultiples.

5.1.2 Tasks

Subjects were asked to perform an adapted visual search task. Usually
in a conventional visual search task, a subject looks for a specific target
from multiple items where there is about 50% of chance that the target
is actually present [32]. In our experiments, subjects were asked to
identify one or multiple items that are the most similar to a target given
in the visualization. This task represents a typical visual search task
that involves visual comparison.

For both visualizations, we created 10 datasets with varying number
of charts (from 50 to 150). Figure 4 shows a configuration of 125 items
for both visualizations, in which the given target is highlighted by a
rectangle in a distinct color.

5.1.3 Procedure

The study was conducted as a within-subjects experiment with 2 ex-
perimental conditions (SM or CM) and 10 repetitions (visualization
image) for each condition. For each repetition, the subject was pre-
sented with only one condition. We counter-balanced the selection
of condition in the 10 repetitions so that each subject performed one
repetition for both conditions with the same number of charts. For ex-
ample, if a subject accomplished one task for SM with 100 items, he
would also be asked to perform another task for CM with 100 items.
The order of tasks was random.

The study was performed on an i7-2600, 3.4 GHz CPU desktop
computer equipped with a standard 24-inch screen of resolution of
1920 × 1080 pixels. Prior to the experiment, the subjects viewed a
tutorial that provided a basic explanation of small multiples, and they
performed some training tasks to get familiar with the user interface
of the experimental system. For each task, the subject was given a
randomly chosen SM or CM visualization, and prompted to answer
the question Find ‘i’ most similar area chart(s) to the highlighted one
(i = 1,2 or 3 randomly). After typing in the answer(s) and click-
ing on the “next’ button, the next task was loaded. After the subjects
finished all tasks, they were asked to rate their satisfaction with Corre-
latedMultiples on a questionnaire containing 6 questions, and finally,
to participate in a semi-structured interview.

5.1.4 Hypotheses

The major goal of the user study is to assess the effectiveness of Cor-
relatedMultiples for visual search of similar items. We formulated the
following hypotheses for this study:
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Fig. 4. Time series charts used in the user study system. Left: Sequential small multiples (SM). Right: CorrelatedMultiples (CM). In each task a
subject was presented with either a SM or a CM and asked to choose 1 (or 2, 3) similar chart(s) to the highlighted one. The user study system is
presented in a video, at http://vimeo.com/50263134.

[H1] CorrelatedMultiples support better performance than conven-
tional small multiples. Because spatial proximity is important for vi-
sually searching for similar items, we expect CorrelatedMultiples to
outperform conventional small multiples.

[H2] Sequential small multiples do not have a significant negative
impact on accuracy compared with CorrelatedMultiples. Although
we believe that the conventional small multiples require more time for
visual search tasks, we hypothesize they do not negatively affect visual
comparison once the items to compare are found.

[H3] CorrelatedMultiples have a positive impact on user satisfac-
tion. Because spatial proximity provides a strong cue for search, we
hypothesize that users prefer to group similar items spatially.

5.1.5 Results and Discussion
We measured the completion time the subjects needed to find items
similar to a given target, the accuracy of their selections, and the
subjective assessment from the evaluation questionnaires. Task com-
pletion time and accuracy measures were evaluated using single fac-
tor Analysis of Variance (ANOVA) for the dependent variables. We
found a significant main effect for task completion time (F(1,22) =
4.8668, p = 0.01427). The average time spent on a task was 35.67
seconds for SM, and 20.46 seconds for CM, as illustrated in Figure
5 (left). Task accuracy was not found to have a significant difference
(F(1,22) = 0.5417, p = 0.3239). On average, the accuracy of a task
was 53.3% for SM, and 60.0% for CM, as shown in Figure 5 (right).

The questionnaire asked subjects to assess their satisfaction with
CM against SM on multiple criteria: ease (CorrelatedMultiples made
it easier in answering the questions), efficiency (I could find the sim-
ilar items more quickly with CorrelatedMultiples), confidence (I was
more confident in my answer with CorrelatedMultiples) and aesthet-
ics (CorrelatedMultiples is visually more pleasing). The score scale is
from 1 (totally disagree) to 5 (totally agree), with 3 as neutral. Fig-
ure 6 provides the average ratings for each criterion. Generally CM
is rated higher than SM, in particular the subjects were more efficient
and confident in the visual search tasks with CM than with SM.

In the interview, two subjects mentioned that although it was easier
to accomplish tasks with CM, they still did a one-time linear scan
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Fig. 5. Mean task completion time (left) and accuracy (right) for the user
study. Average time spent on a task was 35.67 seconds for conventional
small multiples (SM), and 20.46 seconds for CorrelatedMultiples (CM).
Average accuracy on a task was 53.3% for SM, and 60.0% for CM.
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Fig. 6. Subjective satisfaction of CorrelatedMultiples (SM) against con-
ventional small multiples (SM) on the criteria of easy, efficiency, confi-
dence and aesthetics. The scale is from 1 (poor) to 5 (best).

(just as they did with SM) to be sure that they found the right answer.
Four subjects reported that they were not aware of the color encoding
for the groups in CM at first, but were still able to find similar items
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more quickly and confidently since they were placed nearby (due to
the CMDS layout). Others expressed that they figured out the function
of color encoding as they got more familiar with CM, and it helped
them in later tasks. This suggests that CM could potentially enhance
the performance further for visual search tasks if the subjects were
explicitly made aware of the color encoding scheme. The feedback on
CM obtained in the interviews was generally positive. Eight subjects
mentioned that CM was “helpful”, “beneficial” or “useful”.

Based on these results, the hypotheses are well supported. The
shorter task completion time and the (mostly) higher subjective assess-
ment of efficiency supports H1. H2 is supported because even though
most subjects received relatively fewer correct results with SM and
felt they are less confident in their answers with SM, the difference in
the task accuracy is not statistically significant. On the other hand, this
also indicates that CM does not increase the perceived complexity of
the visual search task by associating categories with colors. H3 is sup-
ported by the questionnaire results, which indicate that most subjects
preferred the spatial coherence provided by CM.

In summary, the user studies show that CorrelatedMultiples are use-
ful in helping users visually identify similar items, and they can per-
form this more quickly. Encoding spatial coherency within small mul-
tiples was valued by the users. Most users preferred CorrelatedMulti-
ples.

5.2 Quantitative Evaluation

While CorrelatedMultiples outperform conventional small multiples
for visual search, it is still important to know how well they preserve
spatial proximity in a quantitative manner. Therefore, we performed a
quantitative evaluation of CMDS in comparison with two state-of-the-
art grid layout methods: SpatialGrid (spatially ordered Treemap [33])
and GridMap [13].

5.2.1 Existing Methods

SpatialGrid, which is adapted from spatially ordered Treemap pro-
posed by Wood and Dykes [33], produces a grid layout in which grid
cells are ordered with two-dimensional consistency [13]. Based on
the Squarified Treemap layout algorithm [5], SpatialGrid recursively
processes a single row or column (the shorter one) of the grid cells.
Specifically, given an initial layout I and a target grid G, SpatialGrid
first finds the point in G that is closest in Euclidean distance to its
position in I, for each cell in the shorter side of the grid. The remain-
ing grid cells in G form a sub-grid that is exactly one row or column
smaller than before, which is processed recursively. For more details
we refer to [33] and [13].
GridMap, proposed by Eppstein et al. [13], computes an optimal
point set matching between the regions of an original geographic map
to the cells of a grid. Given an initial geographic map M and a tar-
get grid G of the same number of points in the plane, GridMap com-
putes an optimal one-to-one matching between M and G with a trans-
lation and/or scaling that minimizes the total distance. Basically it
checks all possible cases of matching with translations and/or scal-
ings, and for each case it solves the underlying point set matching
problem via linear integer programming. The optimal matching is the
one with the minimal total displacement. Hereafter, we refer to the
L1 method detailed by Eppstein et al. [13] that minimizes the dis-
placement with translations as the TransGridMap method, and the I
method that minimizes displacement without translation or scaling as
the SimpleGridMap method.

5.2.2 Evaluation Metrics

To compare the quality of the above methods with CMDS, we em-
ployed a set of metrics derived from [33] and [13] — the ratio of dis-
placement, the percentage of recalled adjacency and the percentage
of the preserved directional relation. We also measured the computa-
tional performance of each method.

The ratio of displacement is the average Euclidean distance by
which nodes have been displaced, and is scaled between 0 (no dis-
placement) and 1 (maximum possible displacement). In equation (1)

proposed by Wood and Dykes [33], the ratio of displacement is for-
mulated as:

disp =
∑di

|V |
√

Aroot
, (12)

where di is the Euclidean distance between each cell in the initial lay-
out I and the target grid G, |V | is the number of nodes and Aroot is the
area of the bounding area of I (also the same bounding area of G).

Recall measures the fraction of relevant instances retrieved [26]. In
our case, the relevant instances are the adjacent regions in the origi-
nal layout I, while the retrieved instances are the adjacent cells in the
resulting grid G. For each cell in G, its recalled adjacency is defined
as the ratio between the number of items that are both adjacent in I
and G, and the number of adjacent items in I. Following the criterion
proposed by Eppstein et al [13], two regions or grid cells are consid-
ered adjacent if the intersection of their closed boundaries is nonempty,
suggesting that each grid cell has at most eight neighbors.

The preserved directional relation measures the number of pairs of
cells that have the same orthogonal ordering in both the original layout
I and the resulting grid G. The number of such pairs P is defined as:

P = |(x,y)|(x,y) ∈ I× I ∧ o(I,x,y) = o(G,x,y)|, (13)

where o(I,x,y) is the orthogonal order of (x, y) in I (analogously for
o(G,x,y)). The number is normalized by the total number of possible
pairs to give a percentage.

To compare the computational performance of these two previously
published methods with CMDS, we implemented them in Javascript
and HTML5. The optimal point set matching for the grid map was
achieved using the integer linear programming (ILP) based on a GNU
Linear Programming Kit for Javascript (GLPKJS) [17]. We ran each
method on a geographical map of United States (from Eppstein et
al [13]) in a Google Chrome browser on the same experimental ma-
chine as in Section 4.3. To be consistent with the measurement by
Eppstein et al [13], we considered only the 48 contiguous states as the
initial layout, and the target layout as an 8×6 grid.

5.2.3 Results and Discussion
Table 2 shows the results of the measurement. We can observe
that CMDS recalled more adjacent items than SpatialGrid and Trans-
GridMap, with the same recall as SimpleGridMap. CMDS also
preserved more directional relations than SpatialGrid and Simple-
GridMap, but a bit less than TransGridMap. While TransGridMap
performed best in minimizing total displacement, this was not a sur-
prise since the method is designed to minimize this quantity. We
can see that CMDS was still better than SpatialGrid (32.9% improve-
ment) and SimpleGridMap (27.8% improvement). In terms of run-
ning time, SpatialGrid took the least time. CMDS was roughly 3.2
times faster than SimpleGridMap, and about 150,000 times faster than
TransGridMap. This is expected since TransGridMap requires the
computation of many (48×48×48) distance matchings [13].

The corresponding grid layouts in Figure 7 confirmed these quanti-
tative results. Because SpatialGrid processed a single row or column
of the grid cells starting from the top left corner in a greedy man-
ner, some cells were placed relatively far from their original positions.
For instance, the group of cells IL, OH, WI, MI, which are located in
the middle right of the initial map, were placed in the middle top of
SpatialGrid. As for SimpleTransGrid, cells such as FL, CO and AZ
were placed relatively far from their original positions. Cells in Trans-
GridMap and the CMDS layout seemed spatially stable compared with
the other two methods.

Overall, CMDS outperformed SpatialGrid and SimpleGridMap in
minimizing displacement, recalled more adjacent items than Spatial-
Grid and TransGridMap, better preserved the directional relation than
SpatialGrid and SimpleGridMap, and is more computationally effi-
cient than SimpleGridMap and TransGridMap.

6 APPLICATIONS

Next we will discuss application scenarios and describe several inter-
esting findings. We studied the effectiveness of CorrelatedMultiples
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Initial Map CMDS

SpatialGrid SimpleGridMap TransGridMap

Fig. 7. Grid layouts of USA map. The initial map consists of the 48 contiguous states, from which the generated grid layouts are: CMDS, SpatialGrid,
SimpleGridMap, and TransGridMap, respectively.

Method Displacement Adjacency Recall Directional Relation CPU Time(s)
CMDS 0.1811 75.24% 89.80% 0.162
SpatialGrid 0.2697 73.33% 89.01% 0.010
SimpleGridMap 0.2508 75.24% 89.72% 0.521
TransGridMap 0.1767 74.29% 90.69% 23998.484

Table 2. Numerical measures of the grid layouts in Figure 7. CMDS outperformed SpatialGrid and SimpleGridMap in minimizing displacement,
recalled more adjacent items than SpatialGrid and TransGridMap, better preserved the directional relation than SpatialGrid and SimpleGridMap,
and is more computationally efficient than SimpleGridMap and TransGridMap.

in two applications: stock market trend analysis, and Madden-Julian
oscillation in climate modeling.

6.1 Stock Market Trend Analysis

6.1.1 Application Scenario

The Dow Jones Industrial Average (DJIA) is one of the most widely
followed stock market indices. It has been tracked since May 26, 1896,
and shows how the stocks of 30 large publicly-owned U.S. companies
are traded. Because the DJIA represents some of the largest compa-
nies, large fluctuations can indicate losses and potential pullbacks in
the U.S. economy (shown in Figure 8 (left)), or signify real or antic-
ipated high levels of growth and profits (shown in Figure 8 (right)).
While studying historical DJIA trends and variations can help indi-
viduals and companies to make investment decisions, the patterns are
often too complicated to remember and compare since trends can vary
widely. Understanding similarities and contrasts in annual trends over
the lifetime of the index may help analysts to discern overall patterns.

6.1.2 Dataset

We studied DJIA trends by year, from 1897 to 2011. Each year con-
tains about 250 time steps (all weekdays, excluding holidays). Since
we are interested in relative fluctuations in the DJIA, for each year we
placed the beginning of the year at the origin, and plot the percentage
of change at each time step. Examples of DJIA trend charts are shown
in Figure 8.
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Fig. 8. The Dow Jones Industrial Average (DJIA) trends: (left) a falling
trend can indicate losses and potential declines in the U.S. economy;
(right) a growing trend may signify high levels of growth and profits.

6.1.3 Visual Analysis
To measure similarity in the DJIA time series between two years,
we use the DTW-based similarity measure described in Section 5.1.1.
Based on the similarity relationship obtained from DTW, we applied
CMDS to render CorrelatedMultiples for DJIA trends. Each of the
yearly trends was depicted as a time-series chart, labeled by year. Fig-
ure 1 shows two different visualizations of the DJIA over 115 years.
In the sequential small multiples (left), charts were arranged in the in-
creasing order of year, while the charts in CorrelatedMultiples (right)
were placed in a spatially coherent manner.

In the CorrelatedMultiples of Figure 1 (right), we can see three large
clusters, which can be identified as: falling trends, stable trends, and
rising trends (from top to bottom). In general, the closer to the top in
the figure, the more the DJIA fell over time in the corresponding year.
Near the bottom of the figure, we see increases in the index over a
year. As expected, stable trends are placed in the middle of the figure,
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between the rising and falling trends. Because of the spatial proximity
that the CorrelatedMultiples preserve, trends of similar fluctuations are
placed nearby, which helps us identify similar patterns. For example,
most of the trends at the top of the figure in the CorrelatedMultiples re-
flect severe economic crises, such as in 2008, 1907 and 1931 (from left
to right in the top row), all of which saw sharp declines (around 50%
during the year). These correspond to the Global Financial Crisis, the
1907 Bankers’ Panic and the Great Depression, respectively. Interest-
ingly, a dramatic rising trend of the year 1933 in the bottom-left of
the CorrelatedMultiples (which is the farthest from the year 1931 in
the visualization) represents a great recovery from the Great Depres-
sion — more than 75% of the nation’s banks had been reopened and
several acts were passed by the U.S. Congress to revive the economy
in that year. With CorrelatedMuliples, we are able to quickly identify
similar and dissimilar trends, based on spatial locations.

6.2 Madden-Julian Climate Modeling
6.2.1 Application Scenario

Madden-Julian Oscillation (MJO) is a phenomenon manifested as
intra-annual weather fluctuation in the tropics, mainly in the Indian
and western Pacific Oceans. It is considered by some to be a key
mechanism explaining weather patterns in those regions, and involves
relationships between the atmosphere and ocean currents. It is often
characterized by an eastward progression of enhanced and suppressed
tropical rainfall. Analyzing water vapor intensity over time and a range
of longitudes allows one to gain better understanding about how MJO
behaves over time. Figure 9 shows two examples of water vapor distri-
bution, visualized as area charts. The middle region has higher water
vapor in Figure 9 (left), while the water vapor in Figure 9 (right) gen-
erally increases as it moves eastward. However, as the number of time
steps increases, it becomes more difficult to examine individual dis-
tributions. Moreover, since MJO is periodic, peak water vapor may
occur in the same area at some previous time steps. Visual compari-
son can be improved if similar distributions at different time steps are
placed together, to enable better understanding of periodic patterns.

6.2.2 Dataset

We applied CorrelatedMultiples to an MJO simulation performed by
the Pacific Northwest National Laboratory [18]. The data set made by
this simulation consists of 479 time steps, recorded at 6 hour intervals
(from October 1, 2007 to January 29, 2008). We used the time-varying
water vapor intensity collected in the region of [60◦E − 150◦E] over
time as the raw data, and sampled it every 4 time steps to obtain 119
days of input data. For each selected time step, we computed the dis-
tribution of water vapor by longitude in the given region, and rendered
the distribution as an area chart (as shown in Figure 9).
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Fig. 9. Aggregated distributions of water vapor mixing ratios in the
Madden-Julian Oscillation (MJO) simulation in the region of [60◦E −
150◦E] at two different time steps: (left) the middle and last region have
higher water vapor; (right) the peak of the water vapor has moved east-
ward.

6.2.3 Visual Analysis

Since scientists are generally interested in studying time-varying pat-
terns of MJO, such as shifts in the peaks, we normalized the water va-
por distribution at the selected time step, and computed Earth Mover’s
Distance (EMD) [28] to measure the similarity of the distributions be-
tween each pair of the selected time steps. EMD assigns a large dis-
similarity to two time steps if their peaks are far apart. We generated
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D

Fig. 10. Correlated water vapor distributions in the Madden-Julian Os-
cillation (MJO) simulation visualized by CorrelatedMultiples. Each area
chart represents one day of simulation. The area charts are divided into
four clusters based on their similarity measured by Earth Mover’s Dis-
tance (EMD). Day 45 and 104, and day 10 and 114 are highlighted to
imply periodic patterns during the MJO evolution since they are similar
but with a relatively large time interval.

CorrelatedMultiples using this dissimilarity measure. Each distribu-
tion was rendered using an area chart labeled by its time step, and the
ideal distance li j in (3) of every pair of distributions was set to the
EMD value.

Figure 10 shows CorrelatedMultiples of water vapor distributions
from the MJO simulation. Time steps in the same cluster have simi-
lar distributions. Since rainfall oscillation is reflected in the shape of
water vapor intensity, we can observe some interesting patterns from
the top-right to the bottom-left of Figure 10: in cluster A, peaks gen-
erally showed up on the right, which means tropical rainfall reached
its max in the east side of the given region; while in cluster B, most
of the peaks appeared in the middle of the charts; in cluster C, more
peaks appeared at the west and east sides of the given region; and in
cluster D, most charts have multiple peaks, evenly distributed, which
suggests the MJO occurred more frequently in the corresponding time
steps of this cluster. Furthermore, it is apparent from the figure that
some nearby charts with a large time interval have similar distribu-
tions, such as day 45 and 104, and day 10 and 114 (highlighted in the
figure). This seems to imply a periodic pattern as MJO progresses.

In summary, by means of CorrelatedMultiples, we were are to iden-
tify time steps with similar distributions, and observe certain periodic
behavior, without having to compare all pairs of time steps. The spa-
tial proximity preserved by CorrelatedMultiples also allows compar-
ing and analyzing distributions at the cluster level.

7 CONCLUSION AND FUTURE WORK

We described CorrelatedMultiples, a spatially coherent small multi-
ples visualization. CorrelatedMultiples retain the major advantages
of small multiples to allow side-by-side visual comparison, but also
exhibit spatial locality based on similarity in the data. Layouts are
made by a novel Constrained Multi-Dimensional Scaling (CMDS) al-
gorithm. We explored the effectiveness of CorrelatedMultiples over
sequential small multiples in a controlled user study, and quantitatively
evaluated the quality and performance of the CMDS method compared
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with previous methods. We showed the benefits of CorrelatedMulti-
ples to applications in stock market trend analysis and Madden-Julian
oscillation climate analysis.

Although in this paper, CMDS was applied only to arrange items in
rectangular spaces, the algorithm can be applied to regions with other
shapes, such as circles or the shape of a country’s geographical bound-
ary. In the future, we plan to adapt CMDS to dynamic visualization
of small multiples where we want to simultaneously maintain layout
stability and maximize screen space utilization.
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