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SUMMARY The problem of redistributing the work load on parallel com-
puters is considered. An optimal redistribution algorithm, which minimises the
Euclidean norm of the migrating load, is derived. The relationship between
this algorithm and some existing algorithms is discussed and the convergence of
the new algorithm is studied. Finally, numerical results on randomly generated
graphs as well as on graphs related to real meshes are given to demonstrate the

effectiveness of the new algorithm.

1. INTRODUCTION

To achieve good performance on a parallel computer, it is essential to establish
and maintain a balanced work load among all the processors. Sometimes the load
can be balanced statically, but in many cases the load on each processor can not
be predicted a priori.

One example that demonstrates the need for both static and dynamic load
balancing strategies is the parallel finite element solution of PDE’s based on
unstructured meshes. To achieve high precision while minimising computational
work and memory requirement, adaptive meshing techniques can be used. An
adaptive finite element code starts from a relatively coarse initial mesh, but

gradually refines the mesh every few iterations.
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Assume that the amount of work on each processor is proportional to the
number of mesh nodes on the processor. The static load balancing problem seeks
to partition the initial mesh into subdomains, the number of which equals the

number of processors, such that:
e ecach subdomain has an equal number of nodes, so as to balance the load;

e the number of shared edges (edge cuts) between subdomains and the number
of neighbouring subdomains are as small as possible, so as to minimise the

communication cost.

The static mesh partitioning problem has been studied extensively by many
workers (see, e.g., [1, 2]). Among all the algorithms, the recursive spectral bi-
section algorithm [2, 3], which uses an eigenvector of the Laplacian matrix of
the graph (or the dual graph, for element based applications) of a mesh as a
separator, has been found to give partitions of good quality (i.e., small number
of edge cuts). A multilevel implementation of the algorithm [4] was suggested
to reduce the computational cost of finding the eigenvector. The multilevel idea
can also be combined with local optimization strategies to derive partitioning
algorithms that are able to partition very large meshes in a reasonable amount of
time [5, 6, 7, 8, 9]. For very large meshes, the sheer memory requirement means
that parallel mesh partitioning algorithms will have to be used. This is an active
area of research [7, 10, 11].

Once the initial mesh has been partitioned, either sequentially or in parallel,
and migrated to the processors, calculations can then be carried out. After an
interval of computation, the mesh may be refined at some locations, usually
based on an estimate of the discretisation error. The refinement process might
generate widely varying numbers of mesh nodes on the processors, thus the need

for dynamic load balancing. As an example, Figure 1 shows part of a mesh around
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a three element airfoil, partitioned into 8 subdomains. Due to mesh refinement
the number of nodes on each subdomain is different. Figure 2 shows, for instance,

subdomain 8 has 754 nodes, while subdomain 4 has only 465 nodes.
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Figure 1: Part of a mesh around a three element airfoil, partitioned into 8 sub-

domains.

One way to re-balance the load is to repartition the mesh using one of the
mesh partitioning algorithms mentioned above. But it is difficult to ensure that
the new partitioning will be “close” to the original partitioning. Should the new
partitioning deviates considerably from the old then the cost of transferring large
amounts of data, in addition to that of the mesh partitioning, will be incurred.
An alternative strategy is to migrate the nodes among neighbouring processors
(neighbouring in the sense that these processors share boundaries), effectively
shifting the boundaries to achieve a balanced load. This should involve far less
movement of data compared with repartitioning, although the number of edge

cuts after the migration could possibly be larger than that given by the reparti-
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Figure 2: The processor graph associated with the partitioned mesh in Figure 1,

and the load on each processor (in bracket).

tioning. Therefore care must be taken to keep the number of edge cuts down when
choosing the nodes to be migrated. Nonetheless migration is normally preferred
to repartitioning.

In this paper we shall concentrate on the migration strategy. The process
of migrating loads between processors to achieve a balanced load can be broken

down into two distinctive steps [6, 7]:

e Step 1 (scheduling):  Each processor works out a schedule for the exact
amount of load that it should send to (or receive from) its neighbouring

Pprocessors;

e Step 2 (migration): Once the above schedule is worked out, each proces-
sor decides which particular nodes it should send to or receive from its

neighbouring processors. The migration then takes place.

Step 2 (migration) has been studied by a number of authors. The popular
strategy is to start from the boundary nodes and gradually move to the interior

of the mesh, until enough nodes are marked for migration (see, e.g., [5, 6, 7, 11]).



Scheduling algorithms for Step 1 are mostly iterative. Note that there is
a startup cost for communication on parallel computers — the latency, which
is usually very high compared with the subsequent cost of transmitting a word.
Thus for many applications it is better if the migration of load does not physically
take place until the scheduling algorithm has converged. The final schedule can
then be used for the load migration.

The most popular scheduling algorithms are diffusion type iterative algorithm-
s. These algorithms are asynchronous and are therefore suitable for applications
where the parallelism is fine grained and the load transfer takes place alongside
the iterations of the scheduling algorithm. However, in applications such as finite
element calculation with adaptive meshes, where it is beneficial not to carry out
the load migration until the scheduling algorithm has converged, diffusion type
algorithms may not be very suitable. Because convergence for such algorithms
can be very slow [5].

The motivation of this paper is therefore to propose a more efficient algorithm
for scheduling. For the rest of the paper we will study the following dynamic load

balancing problem.

The dynamic load balancing problem: Find a schedule for the number of
nodes (work load) to be migrated between processors, such that each processor

will have the same load if load migration based on the schedule is carried out.

In devising scheduling algorithms for dynamic load balancing, a number of
considerations are relevant. First, it is hoped that the schedule will balance the
load with minimal data movement between processors, because communication
is expensive compared with computation. Second, from the point of view of re-
ducing the number of edge cuts, it is more desirable for the data movement to

be restricted to the neighbouring processors. Here it is important to differenti-



ate between the graph induced by a particular partitioning of a mesh (termed
“processor graph”, or simply “graph” later on), and that of the processor topol-
ogy. Figure 2 gives the processor graph associated with the partitioned mesh of
Figure 1, together with the load (in brackets) on each processor. Two processors
are linked with an edge and are thus neighbours if they share a boundary. For
instance, processor 1 is linked with processors 2, 3 and 4, but not to processor
6. By restricting the data movement to neighbouring processors, the processor
graph will stay the same. This is important because, if there is no such restric-
tion, then after a few dynamic load balancing steps all processors may well share
boundaries with each other. Finally, the scheduling algorithm itself should take
little time in comparison with the time taken by the application code in between
mesh refinement.

In the next section, a brief review of existing algorithms for the dynamic load
balancing problem is given. In section 3, a dynamic load balancing algorith-
m, which minimises the Euclidean norm of the data movement, is derived. In
Section 4, the algorithm is viewed in the light of the unsteady heat conduction
equation. The relationship between this algorithm and other algorithms is dis-
cussed. In Section 5, theoretical results of the convergence of this algorithm on
special graphs are given. In Section 6, numerical tests are carried out to demon-
strate the effectiveness of the algorithm. Section 7 concludes the paper with some

discussions.

2. EXISTING ALGORITHMS

The dynamic load balancing problem is analogous to the diffusion process,
where an initial uneven temperature or concentration distribution in space drives
the movement of heat (or chemicals), and eventually reaches equilibrium. It

is thus not surprising that a number of algorithms based on this analogy have



been proposed. Cybenko [12] assumed that work load was infinitely divisible
and suggested a diffusion algorithm where each processor exchanges load with its
neighbours, the amount of which is proportional to the difference in their loads.
The algorithm is iterative and converges to a steady state. Similar algorithm-
s have been suggested independently by Boillat [13], and linked to the Poisson
equation for the graphs. Cybenko [12] also suggested a so-called dimension ex-
change algorithm, in which processors were grouped in pairs and processors 7 and
J with loads /; and [; will exchange work and result in a mean load of (I; +1,)/2.
The algorithm converges in d steps, if the graph considered is a hypercube with
dimension d. Xu and Lau [14, 15] extended the dimension exchange algorithm so
that after the exchange processor ¢ will have load ; * A+ {; x (1 — A). If A =0.5
this is equivalent to Cybenko’s algorithm. Based on the eigenvalue analysis of
the underlining iterative matrices, they argued that for some graphs a factor A of
other than 0.5 will converge more quickly. Song [16] suggested an asynchronous
algorithm and proved its convergence based on the theory given by Bertsekas and
Tsitsiklis [17]. The work load is assumed to be integer and the algorithm gave a
maximum of [d/2] load difference between processors, with d being the diameter
of the processor graph. Other modified diffusion type algorithms have also been
suggested [18, 19] and applied in areas such as molecular dynamic simulation.
One of the disadvantages of diffusion like algorithms is their possible slow
convergence, particularly near equilibrium, for reasons analogous to the slow
convergence of the Jacobi algorithm when solving linear systems. The rate of
convergence of the diffusion algorithm on a graph is related to the value of the
smallest positive eigenvalue of its Laplacian [13], which in turn is related to the
number of edge cuts that can be obtained from partitioning the graph. For graphs
that have a small number of edge cuts, the convergence can be slow. Boillat [13]

proved that the worst case happens when the graph is a line, and in such a case



the number of iterations needed to reach a given tolerance is O(p?), with p the
number of processors.

To speedup the process, Horton [20] suggested a multilevel diffusion method.
The processor graph was bisected and the load imbalance between the two sub-
graphs was determined and transferred. This process was repeated recursively
until the subgraphs could not be bisected any more. The advantage of the algo-
rithm is that it is guaranteed to converge in log(p) bisections, and the final load
will be almost exactly balanced even if the work loads are integers. However,
because it is not always possible to bisect a connected graph into two connect-
ed subgraphs, it was not clear from the paper how to proceed for such a case.
Connectivity can of course be restored by adding new edges to a disconnected
subgraph. However this is equivalent to moving data between non-neighbouring
processors and should be avoided, as explained in Section 1.

All the aforementioned algorithms do not take into account one important
factor, namely that the data movement resulting from the load balancing sched-
ule should be kept to a minimum. As discussed before, this is important because
data movement between processors is expensive. Furthermore, for irregular mesh
applications, by keeping the number of nodes migrated between processors s-
mall, it is more likely that the resulting number of edge cuts will not increase

significantly.

3. AN OPTIMAL DYNAMIC LOAD BALANCING ALGORITHM

Let p be the number of processors. Let (V, E) be the processor graph, where
V =(1,2,...,p) is the set of vertices each representing a processor, and E is the
set of edges. The graph is assumed to be connected. Two vertices ¢ and j form
an edge if processors ¢ and j share a boundary of the partitioning. Associated

with each processor 7 is a scalar /; representing the load on the processor. The



average load per processor is

Each edge (i, j) of the graph also has a scalar ¢;; associated with it, where ¢;; is
the amount of load to be sent from processor ¢ to processor j. The variables d;;

are directional, that is,

s = — 03 (1)

This represents the fact that if processor 7 is to send the amount J;; to processor
J, then processor j is to receive the same amount (to send —d;;).

In reality, of course, the work load will be an integer number. In the case of
finite element applications this can be the number of nodes on each processor.
However we shall assume for the moment that the work load on each processor
is a real number that is infinitely divisible. The case when the work load is an
integer will be discussed in Section 6.

A load balancing schedule should make the load on each processor equal to
the average load, that is,

> bij = L — 1, i=12,...,p. (2)
{5 | (iy)eE}
If i > j and (i,7) € E, vertex ¢ will be called the head of the edge (4, 7), and j
the tail. Because of (1), we shall only keep ¢;; as a variable if ¢ is the head of
edge (i, j), but replace d;; with —¢;; if ¢ is the tail.

If p — 1 equations of (2) are satisfied, the remaining one equation will be
satisfied automatically. Thus the number of independent equations is no more
than the number of vertices minus one. The number of variables in the system of
equations (2), on the other hand, is equal to the number of edges in the graph.
There are usually far more edges in a graph than vertices, and in any case for a

connected graph |E| > |V| — 1, where |E| and |V| are the number of edges and
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vertices of the graph (F, V') respectively. Therefore (2) is likely to have infinitely
many solutions. We shall choose amongst these solutions one that minimises the
data movement.

Let A be the matrix associated with (2), z the vector of ¢;;’s and b the right
hand side. Assuming that the Euclidean norm of the data movement is used
as a metric and that the communication cost between any two processors is the
same (which is roughly the case for many modern parallel computers such as the

Cray T3D), the problem becomes

Minimise %x z,
subject to Az =b. (3)
Here A is the |V| x |E| matrix, given by
1, if vertex 7 is the head of edge £,
(A)ix = -1, if vertex 7 is the tail of edge k,
0, otherwise.

Applying the necessary condition for the constrained optimization [21] on (3)
gives
r=A")\ (4)
where A is the vector of Lagrange multipliers. Substituting back into (2) gives

LA =0b, (5)

with L = A AT a matrix of size |V| x |V].
To illustrate the matrices A and L, consider a simple graph of three vertices
linked by a line and let (1,2) and (2, 3) be the first and second edges, then
-1 0
A= 1 -1
0 1
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and
1 -1 0

L=AAT=| -1 2 -1
0 -1 1

The problem of finding an optimal load balancing schedule therefore becomes
that of solving the linear equation (5). It is not difficult to confirm that the

matrix L is in fact the Laplacian matrix of the graph with dimension V| x |V,

defined as
-1, if ¢+ j and edge (i,7) € E,
(L)ij = q deg(i), if 4=j, (6)
0, otherwise.

Here deg(i) is the degree of vertex 7 in the graph.

Once the Lagrange vector A is solved from (5), then by equation (4) and due
to the special form of A” (each row of the matrix has only two non-zeros of 1
and —1), the amount of load to be transferred from processor i to processor j
is simply A; — A;, where A\; and A; are the Lagrange multipliers associated with
processors ¢ and j respectively.

Thus the new load balancing algorithm is:

The new load balancing algorithm
e Step 1: Find the average work load, and thus the right hand side of (5);
e Step 2: Solve LA = b to obtain A;

e Step 3: Determine the amount of load to be transferred. The amount

processor ¢ will send to processor j is A\; — A;.

As a simple example, consider the processor graph in Figure 2. The load for

each processor is given in brackets. The average load is 590 and the largest load
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imbalance is (754 — 590)/590 = 28%. The Laplacian system is now

3 -1 -1 -1 0 0 0 O A1 629 — 590 39
-1 3 -1 0 0 0 0 -1 A2 998 — 590 8
-1 1 5 -1 0 -1 0 -1 A3 487 — 590 —103
-1 0 -1 4 -1 -1 0 0 A4 465 — 590 —125

o o o -1 3 -1 -1 0 As B 950 — 590 B —40

o o0 -1 -1 -1 4 0 -1 A6 631 — 590 41

o o o o -1 0 2 -1 A7 606 — 590 16

0o -1 -1 0 0 -1 -1 4 A8 754 — 590 164

The solution of this linear equation is
(A1, ..., As) = (—2.49,11.03, —17.49, —40.48, —19.19,2.34,21.12,45.15).

These Lagrange multipliers are illustrated in Figure 3 in brackets. The amount
of load to be transferred between two neighbouring processors is the difference
between their Lagrange multipliers, and is shown along the edges in Figure 3. For
example, processor 8 needs to send to processor 6 a load of 45.15 — 2.34 = 42.81.

It is important to note that it is not necessary to explicitly form and store the
Laplacian matrix, and that the new algorithm can be implemented efficiently on

parallel computers. Implementation details will be given in Section 6.

4. RELATIONSHIP WITH DIFFUSION ALGORITHMS

It is instructive to look at the dynamic load balancing problem as a diffusion
or heat conduction process. Let p, ¢ and k denote the density, specific heat and
thermal conductivity respectively and assume that these coefficients are constant.
Let D = ck—p, then the one dimensional heat conduction process can be described

by the following equation

ou 0%u
pZY
ot 0z?

=0,
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Figure 3: The Langrange multiplier (in bracket) associated with each processor,

and the amount of load to be transferred (shown along the edges).

where u is the temperature, ¢ is the time and = the space location. The boundary
condition is assumed to be periodic.
If the above equation is discretised using forward difference in time and central

difference in space, then

u(z,t+ At) —u(z,t) D u(z + Ax,t) + u(x — Az, t) — 2u(z,t)
At B (Ax)? ’

or

DAt

u(z,t+ At) = u(z,t) — B2 [u(

z,t) —u(r — Az, t) + u(z,t) — u(x + Az, t)].

This is just the equation in [12] applied to a simple graph of a ring. The above
iterative process is stable and convergent only if DA¢/(Az)? < 1/2. The gener-

alised form of this iterative process applied to a graph is
u  u — Ru, (7)

with u the vector defined over the vertices and R a matrix that closely resembles
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the Laplacian matrix of the graph. Boillat [13] considered the convergence of this
iterative scheme in detail.

The general form of the heat conduction equation is

cpa—qz + divF =0, (8)

where F' is the heat flux defined as F = —k 7 u.
As mentioned in Section 1, it is the accumulated load (heat) transfer, rather
than the actual history of load (temperature) from the initial state to the steady

state, that is of interest. The accumulated heat flux is given by

Q- / F dt.
0
Since Q is irrotational (curl Q = 0), there exists a scalar field ¢, the potential,
such that
Q=vaq. (9)
Integrating (8) over time [0, co| gives
1 o 1 1,
— divF dt = —divQ = — v ¢ = uf4=0 — U|t—co- (10)
cp Jo cp cp

The Poisson equation (10) is just the continuous form of equation (5), while
equation (9) is the continuous form of equation (4).

The optimal algorithm suggested here is therefore closely related to the d-
iffusion type algorithms in the sense that the underlining equation for both is
(8). The difference is that the diffusion type algorithms integrate (8) directly by
discretising over time as well as space, while the new algorithm suggested solves

the time-integrated equation (10) and only spatial discretisation is needed.

5. CONVERGENCE RESULTS

The Poisson equation (10), or its discretised form (5), can be solved by many

standard numerical algorithms. For example, stationary type algorithms, such as
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Jacobi or Gauss-Seidel algorithms, can be used. The processor graph can also be
coarsened to form a series of graphs, each coarser than the other, and multigrid
type acceleration techniques can be employed [4, 11]

We propose to solve the Laplacian system (5) by the conjugate gradient al-
gorithm [22] in parallel, because of its simplicity and fast convergence. It is well
known (see, e.g., [3, 23]) that the Laplacian matrix L is positive semi-definite.
It has an eigenvalue of zero associated with the eigenvector of all ones and if
the graph is connected, the rest of the eigenvalues are all positive. Starting with
a vector of all zeros, the iterates for the conjugate gradient algorithm will stay
orthogonal to e, the vector of all ones, because L e = 0. Thus the conjugate
gradient algorithm will converge in £ iterations, where k£ is the number of dis-
tinct positive eigenvalues of the Laplacian matrix L (see [21] for the theory of
conjugate gradient algorithms). Clearly k£ < p — 1.

For some special graphs, it is possible to work out the number of distinct
eigenvalues of their Laplacian matrices and therefore the maximum number of

iterations needed for the conjugate gradient algorithm to converge.

Theorem 1 The Laplacian of a hypercube of dimension d has d distinct positive
eigenvalues.

Proof: Let C be the node adjacency matrix of the hypercube, defined in the
same way as the Laplacian matrix L except that the entries on the diagonal are

set to zero. It is known [12] that C has d + 1 distinct eigenvalues
—d, —d+2, —d+4, ..., d—4, d—2, d.

For a hypercube the degree for every vertex is d, thus the Laplacian matrix is
simply
L=C + dl,
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where [ is the unit matrix. Thus L has d + 1 distinct eigenvalues
0,2, 4, ..., 2d—4, 2d — 2, 2d,
of which d of them are positive. O

By this theorem, for a hypercube of p vertices, the conjugate gradient algo-

rithm converges in no more than d = log,(p) steps.

Theorem 2 The Laplacian of a complete graph of p vertices has only one

positive eigenvalue of multiplicity p — 1.

Proof: For a complete graph there is an edge between any two vertices, thus
the Laplacian matrix is full and has entries of one on the off-diagonal positions
and p—1 on the diagonal. It is easy to confirm that a vector with 1 and —1 as the
only two non-zero entries is an eigenvector with an eigenvalue of p 4+ 1. As there
are p — 1 such independent vectors and the Laplacian has another eigenvalue of
0 associated with the vector of all ones, then the positive eigenvalue is p+ 1 with

the multiplicity of p — 1. |
In this case the conjugate gradient algorithm will converge in 1 step.

Theorem 3 The Laplacian of a ring of p vertices has [p/2] distinct positive

eigenvalues.

Proof: The eigenvalue for the Laplacian matrix of a ring is (see, e.g., [13])

2 — 2(:osM

3 bl

e = k=1,2,...,p. (11)

As cos(z1) = cos(zy) for any real number satisfying z; + 25 = 27, thus applied

to equation (11) one has
/\i:)\ja if Z+]:p+2
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If p is even, the matrix has \; and )\g + 1 as the eigenvalues of multiplicity

one, while the rest of the eigenvalues have multiplicity of two because

P_q

)‘g—kl—k = )‘§—|—1—|—k; k= L2,..., 2
Thus there are, in total, (p/2 — 1) + 2 = [p/2] + 1 distinct eigenvalues.
When p is odd, A; is the eigenvalue of multiplicity of one while the other

eigenvalues are all of multiplicity two because

p+l
2

Nowt iy =Aem oy, k=12, 1.

Thus there are, in total, (p +1)/2 = [p/2] + 1 distinct eigenvalues.

So the number of distinct positive eigenvalues is [p/2]. m

Therefore, the conjugate gradient algorithm on a ring will converge in no more

than [p/2] steps.

Theorem 4 The Laplacian on a 2-D torus of p = n; X ngy vertices has at most
([n1/2] +1) x ([n2/2] + 1) distinct eigenvalues.
Proof: Immediate from the proof of Theorem 3, and the fact that the eigenval-

ues for the 2-D torus are

4 — 2 costi=Lm _ 9 og2tka—Lim
71.15 2 y k1:1,...,n1; k2:1,...,n2.

In the special case when n; = ny = n, the number of distinct eigenvalues
is further reduced by a factor of 2, and therefore for a 2-D torus of p = n x n
processors, the conjugate gradient algorithm will converge in around p/8 or fewer
iterations. For a 3-D torus of p = n X n X n, it will converge in around p/48 or

fewer iterations.
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6. NUMERICAL RESULTS

On graphs that do not have special structures, it is difficult to predict the con-
vergence of the conjugate gradient algorithm. In this section the new method,
combined with conjugate gradient algorithm, is therefore implemented numeri-

cally on a parallel computer and compared with a diffusion algorithm.
6.1 Parallel implementation of the new algorithm

On a parallel computer, each iteration of a standard conjugate gradient al-
gorithm applied to the Laplacian system involves three global summations (or
global maximum) of scalars, one matrix-vector multiplication and a few scalar
floating point operations. The conjugate gradient algorithm is well known and
will not be listed here (see [22]). The only operation that requires attention is
the matrix-vector multiplication. On processor ¢, this gives

(LA); = deg()A; — ). A
{4l(i.5)eE}
Here A is the vector of the current estimated Lagrange multipliers. This is im-

plemented on a parallel computer in two steps. On each processor:

e Send its Lagrange multiplier to its neighbour processors; receive neighbour-

ing processors’ Lagrange multipliers;

e Multiply its Lagrange multiplier by the number of neighbours, subtracting

this by neighbouring processors’ Lagrange multipliers.

The solution of (5) is not unique, because if A is a solution of (5), then A+ce is
also a solution, where e is the vector of all ones and « any real number. However,
for a connected graph, the Laplacian is of rank p — 1. The amount of load
transferred between two neighbouring processors, which is the difference between

their \’s, is therefore unique.
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In many applications, the load on each processor is an integer. For example, in
finite element calculations it can be set to the number of nodes on the processor.
Since the conjugate gradient algorithm works with real numbers, we suggest
that the amount of load to be transferred is rounded to the nearest integer once
the algorithm has converged. By doing so, the final load of any processor i
will be no more than deg(7)/2 away from the average load. It is noted that
this possible unbalance of final load is equally suffered by most of the existing
algorithms, including the diffusion algorithms. The processor graph produced by
good quality partitioning should have a small degree, and in any case deg(i) <
p — 1. Furthermore, for large calculations the number of nodes on each processor
will be much larger than the number of processors, the new algorithm should

therefore give a good balanced load.

6.2 Comparison of the new algorithm with a diffusion algorithm

The new dynamic load balancing algorithm, combined with the conjugate
gradient solver, has been implemented in parallel. As a comparison, the diffusion
algorithm, as described in [13], has also been implemented in parallel. At each
iteration in the diffusion algorithm, the new work load on processor 7 is given by

li — lz — Z Cij(li_lj),

{7 | G)eE}

with ¢;; chosen to be 1/(1 + maz{ deg(i),deg(j) }). In implementing the diffu-
sion algorithm the work load is also assumed to be a real number and the final
accumulated load transfer between processors is rounded to the nearest integer.

The convergence criterion for both algorithms is

Li—1
load imbalance = max;ecy { i } < € (12)

where e is set to 1073, This is checked at each iteration of the conjugate gradient
algorithm. For the diffusion algorithm, in order to reduce the synchronisation

time, this is only checked every 5 iterations.
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Randomly generated graphs were first used as processor graphs to test the
two algorithms. The reason for testing on random graphs is that it is easy to
control the average degree of the graphs. This allows a thorough comparison of
the two algorithms over a wide range of graph connectivity.

A random graph generator has been written. Given p vertices, the generator
randomly links vertices until the average degree of the graph reaches the preset
value. The graph is then checked for its connectivity, and extra edges added if
the graph is found to be disconnected. The final degree of the graph can therefore
be slightly larger than the preset value due to the extra edges. The load on each
processor was randomly set to be between 1000 and 5000.

The two dynamic load balancing algorithms were tested on a Cray T3D paral-
lel computer for up to 256 processors, using PVM for message passing and a hand
coded global summation (and global maximum) routine. Table 1 shows the num-
ber of iterations and the elapsed times of the two algorithms against the average
degree and diameter of the graphs. The preset values for the average degree were
chosen as 1, 3, 5, 7, 9. For each value, three random graphs were generated and
the averaged results of the two algorithms over the three random graphs are given
in the table. As can be seen from Table 1, the number of iterations for the new
algorithm is always less than p, and decreases with the increase of the average
degree. The number of iterations for the diffusion algorithm, on the other hand,
can be very large if the degree of the graphs is small. It decreases rapidly with
the increase of the degree of the graphs. As the degree increases, the number
of iterations for the two algorithms finally converges. In terms of elapsed time,
similar trends is observed. For almost all the graphs tested, the new algorithm
takes less time to converge than the diffusion algorithm, even though the cost per

iteration for the new algorithm is higher.
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Table 1 here

It is also interesting to see how the two algorithms scale with the number
of processors. Table 1 clearly shows that for the processor graphs with small
average degrees, the number of iterations for the diffusion algorithm increases
quadratically with the number of processors, while that for the new algorithm
increases linearly. For graphs with a high average degree, both algorithms scale
sub-linearly.

Both algorithms give migration schedules with a good load balance. The worst
load imbalance recorded was 0.24%. The Euclidean norm of the load migration
was also looked at and in most cases the new algorithm gives smaller norms. As
previously discussed, if the amount of load migration is assumed to be a real
number, then the new algorithm should always give smaller or equal Euclidean
norms. But after rounding to integers this may not be the case. The difference
between the norms of the two algorithms is small, however, indicating that the
diffusion process might also possesses some minimal energy property.

The algorithms were further tested on processor graphs and loads related to
two meshes, Tri60K and Tet100K [5], generated using the dynamic mesh parti-
tioning package JOSTLE [5, 7]. The initial load imbalance ranges from 10-50%.
The results of the two algorithms are listed in Table 2. In general the new algo-

rithm performs better than the diffusion algorithm.
Table 2 here

In conclusion, the new dynamic load balancing algorithm is, for almost all
cases, faster than the diffusion algorithm. This is true for random processor
graphs with up to 256 vertices and with an average degree of up to 9, as well as for
processor graphs related to the partitioning of real meshes. In particular, the new

algorithm is superior to the diffusion algorithm for graphs with a small degree.
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As the average degree of the processor graphs from good quality partitioning of
finite element meshes is usually small, this makes the new algorithm very suitable
for such applications. The algorithm has recently been incorporated [7] in the
parallel version of the JOSTLE package to replace a diffusion type algorithm.
The new algorithm is expected to perform even better, in comparison with the
diffusion type algorithms, for future massively parallel computers with thousands,

rather than hundreds, of processors.

7. DISCUSSIONS

In this paper, an optimal dynamic load balancing algorithm has been suggest-
ed and was demonstrated to be able to generate a good load balancing schedule
in very little time. The algorithm is synchronous and is more suitable for ap-
plications where the parallelism is coarse grained, or the load does not change
very rapidly between iterations. Finite element calculation is one such example.
For other applications, where the parallelism is fine grained and the load changes
rapidly every iteration, an asynchronous diffusion type algorithm may be more
suitable because it has lower or no synchronisation cost.

The algorithm was derived by minimising the Euclidean norm of the load
transfer. An alternative measure of the cost of load migration, is probably the

maximum cost of load migration over all processors, that is
cost = maX;cg (to + |l‘z|)

Here ty is the communication latency and « is the subsequent cost of communi-

cation per word. The optimal scheduling problem (3) then becomes

Minimise {max;es (fo + @ |zi])} ,

subject to  Ax =,
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which is equivalent to
Minimise ¢,
subject to Az =b, ¢ > (to+ « |4]), 7 € E. (13)
However, we are not aware of a way of solving (13) efficiently in parallel.

The optimal model (3) can be generalised by assigning a weight w;; to each
edge of the processor graph, where w;; > 0 is a weighting factor representing
the penalty of communication between processors ¢ and j. The quantity to be
minimised becomes %xTWQx, with W the diagonal matrix of weights. Then

equations (4) and (5) become
r=WT2AT)
and
AW AT =b.

Here AW —2AT can be computed as

_wl?-’ if Z?é_], (iaj)EE:
ij
—2 ATy _ e
(AW2A%);; = 2k | (ik)eE} w%,zk; if 7=7,
0, otherwise.
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Table 1 The number of iterations (and in brackets, time for convergence, in
milli-seconds) for the new algorithm and the diffusion algorithm, on

randomly generated graphs

p | diameter | degree | new algorithm | diffusion algorithm
8 6 2 7(3.3) 87 (16.0)

8 3 3 7 (4.0) 25 (6.5)

8 2 5 5 (3.2) 13 (4.5)

8 1 7 1(1.4) 5 (1.9)

16 11 2 14 (7.5) 305 (60.0)
16 5 3 11 (7.0) 48 (13.1)
16 3 5 7 (5.2) 17 (5.9)

16 2 7 6 (5.3) 13 (6.3)

16 2 9 5 (5.0) 10 (5.6)

32 24 2 29 (17.0) 923 (182.4)
32 8 3 17 (11.5) 122 (33.3)
32 5 10 (8.3) 32 (11.4)
32 3 7 8 (7.1) 20 (9.2)

32 3 9 7 (6.8) 15 (8.4)

64 47 2 59 (39.6) 2842 (628.6)
64 9 3 25 (19.3) 177 (51.8)
64 5 5 15 (12.5) 57 (21.3)
64 4 7 11 (10.5) 38 (17.6)
64 3 9 8 (9.1) 23 (13.0)
128 87 2 116 (86.7) 11507 (2915.5)
128 11 3 27 (22.9) 168 (55.8)
128 6 5 15 (14.5) 65 (27.0)
128 5 7 13 (13.4) 43 (22.4)
128 4 9 10 (11.4) 25 (16.1)
256 155 2 223 (182.1) 32243 (8624.0)
256 14 3 34 (31.0) 155 (53.6)
256 7 5 19 (19.0) 65 (28.3)
256 6 7 15 (17.2) 48 (26.4)
256 4 9 12 (15.2) 45 (28.1)
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Table 2 The number of iterations (and in brackets, time for convergence, in
milli-seconds) for the new algorithm and the diffusion algorithm, on

processor graphs resulted from two meshes

p | diameter ‘ degree ‘ new algorithm ‘ diffusion algorithm
Tri60K mesh
16 8 3.25 11(7.3) 45(11.8)
32 9 3.88 17(13.1) 140(40.6)
64 14 4.44 12(11.0) 25(9.4)
128 20 4.77 30(28.6) 520(186.9)
256 30 5.03 41(43.8) 670(263.7)
Tet100K mesh
16 6 3.75 14(9.5) 55(16.6)
32 7 5.88 16(14.1) 70(30.3)
64 10 5.94 22(21.4) 155(72.7)
128 11 7.63 27(32.8) 240(156.2)
256 14 7.23 34(41.6) 285(169.4)
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