
COAST: A Convex Optimization Approach to
Stress-Based Embedding

Emden R. Gansner1, Yifan Hu1, and Shankar Krishnan1

AT&T Labs - Research, Florham Park, NJ

Abstract. Visualizing graphs using virtual physical models is probably the most
heavily used technique for drawing graphs in practice. There are many algorithms
that are efficient and produce high-quality layouts. If one requires that the layout
also respect a given set of non-uniform edge lengths, however, force-based ap-
proaches become problematic while energy-based layouts become intractable. In
this paper, we propose a reformulation of the energy or stress function into a
two-part objective function to which we can apply the machinery of convex pro-
gramming. We provide experimental results to show that this method scales well
and produces attractive layouts while dealing with the edge length constraints.

1 Introduction

For visualizing general undirected graphs, algorithms based on virtual physical mod-
els are some of the most frequently used drawing methods. Among these, the spring-
electrical model [8, 9] treats edges as springs that pull nodes together, and nodes as
electrically-charged entities that repel each other. Efficient and effective implementa-
tions [13, 14, 26] usually utilize a multilevel approach and fast force approximation
within a suitable spatial data structure, and can scale to millions of vertices and edges
while still producing high-quality layouts.

In certain instances, the graph may assign non-uniform lengths to its edges, and the
layout problem will have the additional constraint of trying to match these lengths. A
suitable formulation of the spring-electrical model that works well when edges have
predefined target lengths is still an open problem. While it is possible to encode edge
lengths in the attractive and repulsive forces (e.g., [1], section 10.1), such treatment is
often ad hoc at best.

In contrast, the (full) stress model assumes that there are springs connecting all
vertex pairs of the graph. Assuming we have a graph G = (V,E), with V the set of
vertices and E the set of edges, the energy of this spring system is

∑
i, j∈V

wi j
(∥∥xi− x j

∥∥−di j
)2, (1)

where di j is the ideal distance between vertices i and j, and wi j is a weight factor. A
layout that minimizes this stress energy is taken as an optimal layout of the graph. The
justification for this is clear: in most cases, it is not possible to find a drawing that
respects all of the edge lengths, while expression (1) is basically the mean square error
of a drawing. (See also the work of Brandes and Pich [2].)

The stress model has its roots in multidimensional scaling (MDS) [19] which was
eventually applied to graph drawing [16, 20]. Note that typically we are given only the
ideal distance between vertices that share an edge, which is taken to be unit length for
graphs without predefined edge lengths. For other vertex pairs, a common practice is
to define di j as the length of a shortest path between vertex i and j. Such a treatment,
however, means that an all-pairs shortest path problem must be solved. Johnson’s algo-
rithm [15] takes O(|V |2 log |V |+ |V ||E|) time, and O(|V |2) memory. (A slightly faster,
but still quadratic, algorithm is also known [23].) For large graphs, such complexities
make solving the full stress model infeasible.

A number of techniques have been proposed for circumventing this problem, typ-
ically focused on approximate solutions, using only a few computed distances, or ap-
proximating the shortest path calculations. Gansner et al. [12] proposed another ap-
proach for solving the “stress model” efficiently, by redefining the problem. The key
idea was to note that only the edge distances are given, while using shortest path lengths
for the remainder is somewhat arbitrary, and could be replaced with some other con-
straint that is faster to compute but still works in terms of layout quality. This led them
to propose a two-part modified stress function

∑
{i, j}∈E

wi j
(∥∥xi− x j

∥∥−di j
)2−αH(x), (2)

where the first term encodes the stress associated with the given distances, and the
second handles the remaining pairs.

In this paper, we also consider minimizing a two-part modified stress function.
However, our formulation is such that the objective function is convex. More specif-
ically, it is quartic in the positions of the nodes, and can be expressed as a quadratic
function of auxiliary variables, where each of the auxiliary variables is a product of
positions. We solve the problem by projecting the positions into a subspace spanned by
the eigenvectors of the Laplacian, and transform the minimization problem into one of
convex programming. We call our technique COAST (Convex Optimization Approach
to Stress-based Emdedding).

The rest of the paper is organized as follows. In Section 2, we discuss related work.
Section 3 gives the COAST model, and discusses a way to solve the model by semi-
definite programming. Section 4 evaluates our algorithm experimentally by comparing
it with some of the existing fast approximate stress models. Section 5 presents a sum-
mary and topics for further study.

2 Related Work

Most of the earlier approaches [24, 11, 3, 17, 12] for efficiently handling graph drawings
with edge lengths relied on approximately minimizing the stress model, typically using
some sparse model [11]. One notable effort is that of PivotMDS of Brandes and Pich
[3]. This is an approximation algorithm which only requires distance calculations from
all nodes to a few chosen nodes.

While PivotMDS is very efficient and works well for some graphs, for graphs such
as trees, multiple nodes can share the same position. Khoury et al. [17] approximate the

solution of the linear system in a stress majorization procedure [11] by a low-rank sin-
gular value decomposition (SVD). They used a result of Drineas et al. [7] which states
that for a matrix with well-distributed SVD values, the SVD values and left SVD vec-
tors of the submatrix consisting of randomly sampled columns of the original matrix
are a good approximation to the corresponding SVD values and vectors of the origi-
nal matrix. With this result, they were able to calculate only the shortest paths from
a selected number of nodes, as in PivotMDS. The method avoided having nodes in a
tree-like graph being embedded into the same position by using the exact (instead of ap-
proximate) right-hand-side of the stress majorization procedure, using an observation
that this right-hand-side can be calculated efficiently for the special case of wi j = 1/di j.

Although it essentially ignores edge lengths, the binary stress model of Koren and
Civril [18] is stylistically related to ours, in that the first term attempts to specify edge
lengths (as uniformly 0), the second term has the effect of uniformly spacing the nodes.
Specifically, in that model, there is a distance of 0 between nodes sharing an edge, and
a distance of 1 otherwise, given the model

∑
{i, j}∈E

‖xi− x j‖2 +α ∑
{i, j}/∈E

(‖xi− x j‖−1)2 .

Similarly, Noack [21, 22] has proposed the LinLog model and, more generally, the
r-PolyLog model,

∑
{i, j}∈E

‖xi− x j‖r− ∑
i, j∈V

ln‖xi− x j‖,

where, in particular, the second term is suggestive of our use of entropy.
The most notable attempt to use force-directed approach for encoding edge dis-

tances was the GRIP algorithm [10]. The multilevel coarsening uses maximal indepen-
dent set based filtration, with length of an edge at a coarse level computed from lengths
of its composite edges. On coarse levels, the algorithm uses a version of the Kamada-
Kawai algorithm [16] applied to each node within a local neighborhood of the original
graph, thus handling the relevant edge lengths. On the finest level, however, a localized
Fruchterman-Reingold algorithm [9] is used, with no modeling of edge lengths.

In the area of data clustering, Chen and Buja [4] present LMDS, a model based on
localized versions of MDS. Algebraically, this reduces to

∑
{i, j}∈S

(∥∥xi− x j‖−di j
)2− t ∑

(i, j)/∈S
‖xi− x j‖,

where S contains {i, j} if node j is among the k nearest neighbors if i. It is difficult to
determine how scalable this approach is but some tests indicate it is not appropriate for
graph drawing.

The work most akin to that presented here is the maxent-stress model [12]. That
approach borrows from the principle of maximal entropy, which says that items should
be placed uniformly in the absence of constraints. The model tries to minimize the local
stresses, while selecting a layout that maximizes the dispersion of nodes. This leads to
the function shown in expression (2), where typically H(x) = ln{i, j}/∈E‖xi− x j‖. This
objective function is minimized with a so-called force-augmented stress majorization
procedure.

3 The COAST Algorithm

Let G = (V,E) denote an undirected graph, with the node set (vertices) V and edge set
E. We use n = |V | for the number of vertices in G. We assume that each edge (i, j) has
a desired length di j with weight wi j. Typically, one sets wi j = 1/di j

2, but our analysis
does not require that assumption. We wish to embed G into d-dimensional Euclidean
space. Let xi represent the coordinates of vertex i in Rd , and let P be the n× d matrix
whose rows are the xi. We define the Gram matrix X = (xi j) where xi j = xi · x j, the
matrix of inner products. It is well known that X is a positive semi-definite matrix.

We consider minimizing a two-part modified stress function:

T (P) = ∑
{i, j}∈E

(wi j‖xi− x j‖2−wi jd2
i j)

2− tλ ∑
(i, j)/∈E

‖xi− x j‖2, (3)

where the first term attempts to assign edges their ideal edge lengths, and the second
term separates unrelated nodes as much as possible. The parameter t can be used to
balance the two terms, emphasizing either conformity to the specified edge lengths
(small t) or uniform placement (large t). Without loss of generality, we can assume a
zero mean for the xi, i.e., ∑i xi = 0. We set

λ =
|E|(

n
2

)
−|E|+1

to balance the relative size of the two terms, as suggested by Chen and Buja [4]. To
minimize T (P), let T1 and T2 be the first and second terms of T , respectively, so that
T = T1−T2, and consider the first term. We have the following derivation:

T1 = ∑
{i, j}∈E

{wi j(xii− xi j− x ji + x j j)−wi jdi j
2}2

= ∑
{i, j}∈E

{wi jTr(Ei jX)−wi jdi j
2}2

(4)

where Tr() is the trace function and Ei j = (ekl) is the n×n matrix with

ekl =

1, if k = l = i or k = l = j
−1, if k = i and l = j
−1, if k = j and l = i
0, otherwise

Using standard properties of the trace, the expression 4 can be rewritten as

∑
{i, j}∈E

wi j
2{vec(Ei j)

T X −di j
2}2

(5)

where X = vec(X) and vec() is the matrix vectorization operator.
Functions defined on nodes of a graph can be well approximated by the eigenvec-

tors of the graph Laplacian [5], and the smoother the function is, fewer eigenvectors are

required to approximate it well. It is reasonable to assume that the function that embeds
the vertices in Rd is smooth over the graph. Therefore, the bottom k eigenvectors of the
graph’s Laplacian provide a good sparse basis for the position vectors. Typical values
of k range from 10-30 depending on the size of the graph. Let Q ∈ Rn×k be the matrix
composed of the eigenvectors of the Laplacian corresponding to the k smallest eigen-
values, ignoring the eigenvalue 0. It is well known that the eigenvector corresponding to
eigenvalue 0 accounts for the center of mass of the function. Removing it from consid-
eration automatically places the embedding at the origin. We can then find k vectors yl
in Rk so that we can write each xi as ∑l qilyl where qi = (qi1,qi2, . . . ,qik) is the ith row of
Q. If we then define the k×k positive semi-definite matrix Y = (yi j) where yi j = yi ·y j,
we have

X = PPT = QY QT

Using X = vec(X) and letting Y = vec(Y), we can rewrite the above as

X = (Q⊗Q)Y ,

where ⊗ is the Kronecker product. Using this in expression 5, we have

T1 = ∑
{i, j}∈E

wi j
2{vec(Ei j)

T (Q⊗Q)Y −di j
2}2

(6)

Since xi− x j = ∑l(qil − q jl)yl , it is fairly straightforward to see that the following
holds:

vec(Ei j)
T (Q⊗Q) = (qi−q j)⊗ (qi−q j)

Applying this to equation 6, we have

T1 = ∑
{i, j}∈E

wi j
2{(qi−q j)⊗ (qi−q j)Y −di j

2}2

= ∑
{i, j}∈E

wi j
2Y T [((qi−q j)⊗ (qi−q j))

T ((qi−q j)⊗ (q j−qi))]Y −

2 ∑
{i, j}∈E

wi j
2di j

2((qi−q j)⊗ (qi−q j))Y + ∑
{i, j}∈E

wi j
2di j

4

Now, turning to the second term of T (P), we have

T2 = tλ ∑
(i, j)/∈E

‖xi− x j‖2

= tλ

{
∑
i> j
‖xi− x j‖2− ∑

{i, j}∈E
‖xi− x j‖2

}
(7)

Lemma 1. ∑i> j ‖xi−x j‖2 = nTr(Y) and ∑{i, j}∈E ‖xi−x j‖2 = ((qi−q j)⊗(qi−q j))Y

Proof. Because the xi have zero mean, the first summation is equal to n∑i ‖xi‖2 =
nTr(X) = nTr(Y). ut

Using lemma 1, we can rewrite equation 7 as

T2 = tλ{nTr(Y)− ((qi−q j)⊗ (qi−q j))Y }
= tλ{nvec(I)T − ∑

{i, j}∈E
((qi−q j)⊗ (qi−q j))}Y

Combining our recastings of the two terms of equation 3, we have:

T (P) = T1−T2

= Y T

[
∑
{i, j}∈E

wi j
2{((qi−q j)⊗ (qi−q j))

T ((qi−q j)⊗ (qi−q j))}

]
Y −[

∑
{i, j}∈E

(2wi j
2di j

2− tλ)((qi−q j)⊗ (qi−q j))−ntλvec(I)T

]
Y +

∑
{i, j}∈E

wi j
2di j

4.

To simplify the exposition, we can write T (P) as Y T AY +bT Y + constant. Since
A and Y are positive semi-definite matrices, this is a convex function inside the semi-
definite cone. It can be solved easily by any off-the-shelf semi-definite program (SDP).
SDP is usually inefficient, taking cubic time in the size of the variables and constraints.
A key novelty in our approach is the use of the approximation using the graph Laplacian.
Instead of minimizing with n2 variables, our re-parameterization with Y reduces the
number of variables to k2. This is usually constant for most graphs and hence makes
our approach scalable. Because of the special structure of our problem, we can solve
it using a Semidefinite Quadratic Linear Program (SQLP) [25] which is much more
efficient than standard SDPs.

4 Experimental Results

We implemented the COAST algorithm in a combination of Matlab and C code. The
main parts consist of forming the matrix A and vector b, calculating the eigenvectors of
the Laplacian, and solving the optimization problem. The last part is dependent only on
the number of eigenvectors k, hence is constant for fixed number of eigenvectors. For
graphs of size up to 100,000, the minimization using SQLP takes less than 10 seconds
inside Matlab.

We tested the COAST algorithm for solving the quartic stress model on a range
of graphs. For comparison, we also tested PivotMDS; PivotMDS(1), which uses Pivot-
MDS, followed by a sparse stress majorization; the maxent-stress model Maxent; and
the full stress model, using stress majorization. We summarize all the tested algorithms
in Table 1.

With the exception of graph gd, which is an author collaboration graph of the Inter-
national Symposium on Graph Drawing between 1994-2007, the graphs used are from
the University of Florida Sparse Matrix Collection [6]. Our selection is exactly the same
as used by Gansner et al. [12]. Two of the graphs (commanche and luxembourg)

Table 1. Algorithms tested.

Algorithm Model Fits distances?
COAST quartic stress model Yes. Edges only

PivotMDS approx. strain model Yes/No
PivotMDS(1) PivotMDS + sparse stress Yes.

Maxent PivotMDS + maxent-stress Yes.
FSM full stress model Yes. All-pairs

have associated pre-defined non-unit edge lengths. In our study, a rectangular matrix,
or one with an asymmetric pattern, is treated as a bipartite graph. Test graph sizes are
given in Table 2.

Table 2. Test graphs. Graphs marked ∗ have pre-specified non-unit edge lengths. Other-
wise, unit edge length is assumed.

Graph |V | |E| description
gd 464 1311 Collaboration graph

btree 1023 1022 Binary tree
1138 bus 1138 1358 Power system
qh882 1764 3354 Quebec hydro power

lp ship04l 2526 6380 Linear programming
USpowerGrid 4941 6594 US power grid
commanche∗ 7920 11880 Helicopter
bcsstk31 35586 572913 Automobile component

luxembourg∗ 114599 119666 Luxembourg street map

We summarize drawings for all graphs tested in the Appendix. Following Brandes
and Pich [2], each drawing has an associated error chart. In an error chart, the x-axis
gives the graph distance bins, the y-axis is the difference between the actual geomet-
ric distance in the layout and the graph distance. The chart shows the median (black
line), the 25 and 75 percentiles (gray band) and the min/max errors (gray lines) that
fall within each bin. For ease of understanding, we plot graph distance against distance
error, instead of graph distance vs. actual distance as suggested by Brandes and Pich
[2]. Because generating the error chart requires an all-pairs shortest paths calculation,
we provide this chart only for graphs with less than 10,000 nodes.

In the graph renderings, we use a red-to-green-to-blue color scale to encode edge
lengths from short to long. Edges shorter than half of the median edge length are red,
edges longer than 1.5 times the median are blue, and other edges are colored according
to the scale.

With the error chart, we also include a graph distance distribution curve (red), repre-
senting the number of vertex pairs in each graph distance bin. This distribution depends
on the graph, and is independent of the drawing. In making the error charts, the layout
is scaled to minimize the full stress, with wi j = 1/d2

i j.
As an example, the error chart for PivotMDS on btree (page 13, row 2, column

2) shows that, on average, the median line is under the x-axis for small graph dis-

tances. This means that the PivotMDS layout under-represents the graph distance be-
tween vertex pairs that are a few hops away. This is because it collapses branches of
tree-like structures. The leaves of such structures tend to be a few hops away, but are
now positioned very near to each other. To some extent the same under-representation
of graph distance for vertex pairs that are a few hops away is seen for PivotMDS and
PivotMDS(1) on other non-rigid graphs, including 1138 bus, btree, lp ship041
and USpowerGrid. Compared with PivotMDS and PivotMDS(1), the median line for
COAST and Maxent (column 4) do not undershoot the x-axes as much.

Comparing the COAST layouts with the others, we note that it appears to track the
x-axis more tightly and uniformly than the others, except for large lengths where, in
certain cases, it dives significantly. In general, COAST has a more consistent bias for
under-representation than the other layouts. The others tend to under-represent short
lengths and over-represent long lengths. Visually, most of the COAST layouts layouts
are, at worst, satisfactory. For example, although it does not capture the symmetry of
btree as well as Maxent, it does a better job of handling the details.

The three largest graphs clearly differentiate COAST from the other non-FSM al-
gorithms. Although it does a good job separating the blades in the main and tail ro-
tors, it appears to have a very difficult time finding the relatively smooth grid surfaces.
With bcsstk31 and luxembourg, although we have no FSM layout for comparison,
COAST is clearly the outlier. We hope that future work can explain these anomalies.

While visually comparing drawings made by different algorithms is informative,
and may give an overall impression of the characteristics of each algorithm, such in-
spection is subjective. Ideally we would prefer to rely on a quantitative measure of
performance. However such a measure is not easy to devise. For example, if we use
sparse stress as our measure, PivotMDS, that minimizes sparse stress, is likely to come
out best, despite its shortcomings. As a compromise, we propose to measure full stress,
as defined by (1), with wi j = 1/d2

i j. Bear in mind that this measure naturally favors the
full stress model.

Table 3 gives the full stress measure achieved by each algorithm. Because it is ex-
pensive to calculate all-pairs shortest paths, we restrict experimental measurement to
graphs with less than 10,000 nodes. From the table we can see that, as expected, FSM
is the best, because it tries to optimize this measure. We note that COAST is mostly
competitive with the other non-FSM layouts. The exception is the the commanche ex-
ample, where COAST is a factor of two to three worse than the others, and about seven
times worse than FSM. This is probably related to what we saw with the respective data
in the Appendix.

Table 3. Full stress measure for PivotMDS, PivotMDS(1), Maxent, COAST and FSM.
Smaller is better.

Graph PivotMDS PivotMDS(1) Maxent COAST FSM
gd 19384 15073 12327 13592 9734

btree 130190 109713 63524 79650 60226
1138 bus 77834 64630 44797 76296 40030
qh882 147114 119615 102654 126097 84477

lp ship04l 666532 769495 363024 321437 250707
USpowerGrid 1123582 932395 1017798 1149596 701831
commanche 2305010 1547432 1545418 4733527 653869

Table 4 lists the CPU time used by these methods on a range of graphs. Although the
timings are significantly larger for COAST than for the others, we note two things. First,
the COAST timings are not terrible, generally within an order of magnitude for those
of Maxent. Indeed, FSM is largely infeasible when applied to graphs like bcsstk31
and luxembourg. Second, our current implementation is a prototype, largely done as
a proof-of-concept. It makes use of various algorithm implementations that are easily
available and easy to use, but which do not reflect the best available implementations.
We are confident that, by re-implementing COAST, we can get quite acceptable timings.
Note that the reason that COAST is not as fast for smaller graphs is that there is a fixed
overhead in solving the optimization problem, which is dependent only on k.

Table 4. CPU time (in seconds) for PivotMDS, PivotMDS(1), Maxent, COAST and FSM.
A limit of 10 hour CPU time is imposed and “-” is used to denote runs that could not
finish within that time, or ran out of memory.

Graph PivotMDS PivotMDS(1) Maxent COAST FSM
gd 0.3 0.3 0.8 10.7 2.3

btree 1.1 1.1 2.7 16.4 10
1138 bus 0.1 0.19 2.1 8.8 16
qh882 0.1 0.3 2.2 35.6 39

lp ship04l 0.1 0.1 2.2 52.0 58
USpowerGrid 0.1 0.9 6.5 82.1 272
commanche 0.2 0.9 9.0 115.0 1025
bcsstk31 2.4 21.6 102 675.9 -

luxembourg 2.4 630 209 621.8 -

4.1 Measuring Precision of Neighborhood Preservation

Sometimes, in embedding high dimensional data into a lower dimension, one is inter-
ested in preserving the neighborhood structure. In such a situation, exact replication of
distances between objects becomes a secondary concern.

For example, imagine a graph where each node is a movie. Based on some recom-
mender algorithm, an edge is added between two movies if the algorithm predicts that a
user who likes one movie would also like the other, with the length of the edge defined
as the distance (dissimilarity) between the two movies. The graph is sparse because
only movies that are strongly similar are connected by an edge. For a visualization of
this data to be helpful, we need to embed this graph in 2D in such a way that, for each
node (movie), nodes in its neighborhood in the layout are very likely to be similar to
this node. This would allow the user to explore movies that are more likely of interest
to her by examining, in the visualization, the neighborhoods of the movies she knew
and liked.

Following Gansner et al. [12], we look at the precision of neighborhood preserva-
tion. We are interested in answering the question: if we see vertices nearby in the em-
bedding, how many of these are actually also neighbors in the graph space? We define
the precision of neighborhood preservation as follows. For each vertex i, K neighboring

vertices of i in the layout are chosen. These K vertices are then checked to see if their
graph distance is less than a threshold d(K), where d(K) is the distance of the K-th clos-
est vertex to i in the graph space. The percentage of the K vertices that are within the
threshold, averaged over all vertices i, is taken as the precision. Note that precision (the
fraction of retrieved instances that are relevant) is a well-known concept in information
retrieval. Chen and Buja [4] use a similar concept called LC meta-criteria.

Figure 1 gives the precision as a function of K. From the figure, it is seen that, in
general, COAST has the highest, or nearly the highest, precision. PivotMDS(1) tends
to have low precision. The precision of other algorithms, including Maxent, tends to
be between these two extremes. We do not have a good explanation for this, except to
mention that in an earlier study [12], it was found that a force directed algorithm sfdp
also has the highest precision.

Overall, precision of neighborhood preservation is a way to look at one aspect of
embedding not well-captured by the full stress objective function, but is important to
applications such as recommendations. COAST is found to perform well in this respect.

5 Conclusion and Future Work

In this paper, we have described a new technique for creating graph drawings that at-
tempt to satisfy edge length constraints. This technique uses a modified two-part stress
function, one part for the edge lengths, the other to guide the relative placement of other
node pairs. The stress is quartic in the positions of the nodes, and can be transformed
to a form that is suitable for solution using convex programming. The results produced
are good and the algorithm is scalable.

Although the performance of a prototype of the algorithm is already competitive, we
rely on an ad hoc implementation using a combination of Matlab and C codes, with the
most time consuming parts still in Matlab. It would be very desirable to re-implement
the algorithm entirely in C, using the best available libraries.

Our technique follows the general strategy of doing length-sensitive drawings for
large graphs by reformulating the energy function, keeping the core length constraints,
and then applying some appropriate mathematical machinery. Variations of this tech-
nique have been successfully used by others [17, 12]. It would be interesting to explore
additional adaptations of this approach.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for the visualization of
Graphs. Prentice-Hall (1999)

2. Brandes, U., Pich, C.: An experimental study on distance based graph drawing. In: Proc.
16th Intl. Symp. Graph Drawing (GD ’08). LNCS, vol. 5417, pp. 218–229. Springer-Verlag
(2009)

3. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large
data. In: Proc. 14th Intl. Symp. Graph Drawing (GD ’06). LNCS, vol. 4372, pp. 42–53 (2007)

4. Chen, L., Buja, A.: Local multidimensional scaling for nonlinear dimension reduction, graph
drawing, and proximity analysis. Journal of the Americal Statistical Association 104, 209–
219 (2009)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

K

gd

PivotMDS
PivotMDS(1)

Maxent
COAST

FSM
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

K

btree

PivotMDS
PivotMDS(1)

Maxent
COAST

FSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

K

1138_bus

PivotMDS
PivotMDS(1)

Maxent
COAST

FSM
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

K

qh882

PivotMDS
PivotMDS(1)

Maxent
COAST

FSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

K

lp_ship04l

PivotMDS
PivotMDS(1)

Maxent
COAST

FSM
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

K

USpowerGrid

PivotMDS
PivotMDS(1)

Maxent
COAST

FSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25 30 35 40 45 50

pr
ec

is
io

n

K

commanche

PivotMDS
PivotMDS(1)

Maxent
COAST

FSM

Fig. 1. Precision of neighborhood preservation of the algorithms, as a function of K. For each
vertex i, K-nearest neighbors of vertex i in the layout is chosen. These K vertices are then checked
to see if their graph distance is less than a threshold d(K), where d(K) is the graph distance of
the K-th closest vertex to i in the graph space. The percentage of the K vertices that are within
the threshold, averaged over all vertices i, is taken as the precision. The higher the precision, the
better.

5. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics,
No. 92). American Mathematical Society (Dec 1996)

6. Davis, T.A., Hu, Y.: University of Florida Sparse Matrix Collection. ACM Transaction on
Mathematical Software 38, 1–18 (2011), http://www.cise.ufl.edu/research/sparse/matrices/

7. Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the
singular value decomposition. Machine Learning 56, 9–33 (2004)

8. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)
9. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force directed placement. Software

- Practice and Experience 21, 1129–1164 (1991)
10. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A fast multi-dimensional algorithm for drawing

large graphs. LNCS 1984, 211 – 221 (2000)
11. Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Proc. 12th

Intl. Symp. Graph Drawing (GD ’04). LNCS, vol. 3383, pp. 239–250. Springer (2004)
12. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans.

Vis. Comput. Graph. 19(6), 927–940 (2013)
13. Hachul, S., Jünger, M.: Drawing large graphs with a potential field based multilevel algo-

rithm. In: Proc. 12th Intl. Symp. Graph Drawing (GD ’04). LNCS, vol. 3383, pp. 285–295.
Springer (2004)

14. Hu, Y.: Efficient and high quality force-directed graph drawing. Mathematica Journal 10,
37–71 (2005)

15. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1),
1–13 (Jan 1977), http://doi.acm.org/10.1145/321992.321993

16. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information
Processing Letters 31, 7–15 (1989)

17. Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.: Drawing large graphs by low-rank stress
majorization. In: Proc. Eurographics/IEEE TVCG Symp. Visualization (2012)

18. Koren, Y., Çivril, A.: The binary stress model for graph drawing. In: Proc. 16th Intl. Symp.
Graph Drawing (GD ’08). LNCS, vol. 5417, pp. 193–205. Springer-Verlag (2008)

19. Kruskal, J.B.: Multidimensioal scaling by optimizing goodness of fit to a nonmetric hypoth-
esis. Psychometrika 29, 1–27 (1964)

20. Kruskal, J.B., Seery, J.B.: Designing network diagrams. In: Proceedings of the First General
Conference on Social Graphics. pp. 22–50. U. S. Department of the Census, Washington,
D.C. (Jul 1980), bell Laboratories Technical Report No. 49

21. Noack, A.: Energy models for graph clustering. Journal of Graph Algorithms and Applica-
tions 11 (2007)

22. Noack, A.: Modularity clustering is force-directed layout. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics) 79 (2009)

23. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. The-
oretical Computer Science 312(1), 47–74 (Jan 2004), http://dx.doi.org/10.1016/S0304-
3975(03)00402-X

24. de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality re-
duction. In: Advances in Neural Information Processing Systems 15. pp. 721–728. MIT Press
(2003)

25. Ttnc, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using
sdpt3. MATHEMATICAL PROGRAMMING 95, 189–217 (2003)

26. Walshaw, C.: A multilevel algorithm for force-directed graph drawing. J. Graph Algorithms
and Applications 7, 253–285 (2003)

Appendix

The following tables present drawings and error charts of the tested algorithms. In an
error chart, X is the target distance bin, Y is the difference between layout distance and
target distance. The chart shows the median (black line), the 25 and 75 percentiles (gray
band) and the min/max errors (gray lines), as well as the error distribution (red line). A
limit of 10 hour CPU time was imposed and “-” denotes runs that did not finish within
that time, or ran out of memory. In the drawings, a red-to-green-to-blue color palette is
used to encode edge lengths from short to long.

Graph PivotMDS PivotMDS(1) Maxent COAST FSM

gd

btree

Graph PivotMDS PivotMDS(1) Maxent COAST FSM

1138 bus

qh882

lp ship04l

Graph PivotMDS PivotMDS(1) Maxent COAST FSM

USpowerGrid

commanche

bcsstk31

-

Luxembourg

-

