An Improved Diffusion Algorithm

for Dynamic Load Balancing

Y. F. Hu and R. J. Blake
Daresbury Laboratory, Daresbury,
Warrington WA4 4AD, United Kingdom
Tel. +44 (0)1925 603362, Fax +44 (0)1925 603634
e-mail: Y.F.Hu@dl.ac.uk

Abstract

Diffusion type algorithms [1, 3, 11] are some of the most popular al-
gorithms for scheduling in dynamic load balancing. It is known however
that this type of algorithm can suffer from slow convergence. In this paper
the performance of the diffusion type algorithms is improved, while retain-
ing the nearest neighbour communication requirement, through the use of
Chebyshev polynomials. It is also proved that both the diffusion algorithm
and the improved diffusion algorithm have an optimal property in terms
of the amount of load migrated. Numerical results are given comparing
the algorithm with the diffusion algorithm as well as a fast algorithm that

requires global communication.

Keywords Dynamic load balancing; scheduling; diffusion algorithm; Chebyshev

polynomials.

1 Introduction

An important issue in the efficient use of parallel computers is that of load bal-
ancing. For many applications, the load on each processor changes during the
computation. Furthermore, on a none-dedicated network of computers, the per-
formance of each computer can fluctuate. It is therefore very important to balance
the computational load dynamically in an efficient manner.

To achieve the load balance, it is necessary to calculate the amount of load
to be migrated from each processor to its neighbours. Algorithms for such cal-
culations are called dynamic load balancing algorithms. Subsequently, it is also
necessary to migrate the load based on this calculation, although this is not
within the scope of the current paper.

Many dynamic load balancing algorithms exist, including diffusion type algo-
rithms [1, 3, 11], the dimension exchange algorithm [3, 13, 14] and the multilevel
algorithm [8]. Among them, the diffusion algorithms are frequently used because
of their simplicity. The diffusion algorithms also require only local communica-
tion. However diffusion algorithms are known to suffer from slow convergence
[1]. If applied to a ring topology, the number of iterations needed to reach a
given tolerance is of O(p?), with p the number of processors in the ring. When p
increases, the convergence deteriorates very quickly.

To overcome this slow convergence, the authors recently proposed an alter-
native algorithm [9]. The algorithm was demonstrated to be faster on parallel
computers, and is now being used in the dynamic load balancing of irregular
mesh based applications [12]. This algorithm also has the added advantage that
the sum of the squares of the amount of load to be migrated is minimized, which
helps to minimize the communication cost of the actual migration process. The

disadvantage of this algorithm is that it requires global communication, in the

form of global summations.

This paper attempts to improve the diffusion algorithm of [1, 3] and at the
same time to retain its advantage of not requiring global communication. In
Section 2, the diffusion algorithm is presented, and new variants of this algo-
rithm proposed. An algorithm recently developed by the authors, which requires
global communication, is introduced. An optimal property of the diffusion algo-
rithm is proved. In Section 3 the improved diffusion algorithm is derived and its
convergence analyzed. An optimal property is also established. Section 4 gives

numerical results and Section 5 presents some conclusions.

2 The Diffusion Algorithm and A Global Algo-
rithm

The dynamic load balancing algorithms considered here operate on the processor
graphs. Depending on the application, the processor graph can be a graph that
describes the topology of the parallel computer, or one that reflects the inter-
connection of the subdomains of a mesh that has been partitioned and distributed
amongst processors.

Parallel finite element calculation with mesh refinement is one application
where there is a need for dynamic load balancing, as the following simple exam-
ple illustrates. Figure 1 (a) shows a mesh of an “A” shape partitioned into 8
subdomains. Figure 1 (b) shows the same mesh but with subdomain 1 refined.
Due to this refinement, subdomain 1 on processor 1 has 25 mesh nodes, compared
with 15 nodes for the other processors. This results in a load imbalance, that
needs to be resolved by a dynamic load balancing step.

The corresponding processor graph for Figure 1 (b) is shown in Figure 2,

where each vertex represents a subdomain (or a processor), and two vertices are
linked by an edge if the corresponding subdomains share edges of the mesh. The

load on each processor is shown in brackets.

o e
2 Ve N

B, e

(@) ®)

Figure 1: (a) A mesh of “A” shape partitioned into 8 subdomains; (b) the mesh

refined at subdomain 1

2.1 Some Definitions

Let p be the number of processors. The processor graph is represented by a
graph (V, E), with |V| = p vertices and |E| edges. Vertices are numbered from
1 to p and edges are numbered from 1 to |E|. The graph is assumed to be
connected. Denoting 7 <> j if vertices ¢ and j form an edge of the processor
graph. Associated with each vertex (each processor) i is a scalar [; representing

the load on the processor. The average load per processor is

r_ T b
V]

Each edge is assumed to have a direction associated with it, say from the

(1)

vertex with smaller index to the vertex with larger index. The former will be

4

3 (15)

4 (15) 515

6 (15)

2 (15)

8(15K

1'25) 7 (15)

Figure 2: processor graph associated with the partitioned mesh in Figure 1 (b),

and the load (in brackets) on each processor

called the head and the latter the tail of the edge. The amount of load to be
transferred on the m-th edge (along the direction of the edge) is denoted as d,.

Denote

b=(l1—l_,l2—l_,...,l‘v‘—Z_)T (2)

the vector of load imbalance, and
xr = (51, 52, ceey 5‘E|)T

the vector of the load to be transferred along the edges of the graph.

Definition The dynamic load balancing problem is that of finding a schedule
that gives the amount of load 4,, to be transferred along any edge m, such that

after the transfer, the load on each processor will be the same.

Consider the simple graph of Figure 3. The amount of load to be transferred

along any edge is also called the “flow”. The “flow”, when satisfied, should make

V2

o™, 8
\2
Vl es 3
@
=1 Ip=1
A <
/;\ =\ /,{-b =\
o Cd o v
1, =10 N i,=4 = lo=4
1 F—— 3 I =10 =2 3
(b) (©)

Figure 3: (a) a graph; (b) a load migration scheme; (c) another scheme
the load on each processor equal to the average load. That is,

61+53 = ll—l,
5140 = -1,

—52—53 = lg—l.

Or,
Az = b, (3)
where
1 0 1
A=] -1 1 0
0 -1 -1

For a general graph, the matrix A is a matrix of dimension |V | x |E|, termed

the vertex-edge incident matrix [10], and defined as

1, if vertex ¢ is the head of edge 7,
(A)i; =14 —1, if vertex 7 is the tail of edge j, (4)
0, if vertex ¢ is neither the head nor the tail of edge j.

2.2 The Diffusion Algorithm

The diffusion algorithm, as described in [1, 3], operates on the load itself. At

k+1

each iteration of the algorithm, the new load ZZ() of a vertex i is given by the

1

combination of its original load and the load of its neighbouring vertices,

namely
D = ® ey ((P 1), i jev k=0,1,2,... (5)
(O]
Here c;; are coefficients, usually less than one, representing the fact that only
a fraction of the difference of load between processor ¢ and its neighbours is
sent/received. Initially the load for vertex i € V is ZZ(O) =1l

In matrix form, the above equation can be written as

1*) = (1 — L)I®, k=0,1,2,... (6)
where [(F) = (lgk), lék), e, l|(‘k,)|) is the vector of load, the matrix
L=AW AT

is called the weighted Laplacian matrix of the graph. It plays an important role
in algebraic graph theory. Its explicit form can be found in equation (16). Matrix
W, a diagonal matrix of the size |E| x |E|, consists of the coefficients ¢;;. Matrix
A is the vertex-edge incident matrix (4).

For the choice of the coefficients, Boillat [1] suggested

1
- . | o QjeV .
“ = hax {deg(i),deg(j)} + 1 el b (M

Here deg(7) stands for the degree of a vertex 4, which corresponds to the number
of edges attached to this vertex.
The amount of load transferred at iteration k£ from processor 7 to processor j

is cij(lz(k) - l§-k)). Denote by y*) a vector of dimension |E|, that consists of the

7

load to be transferred along each of the edges at iteration k. The total amount

of load to be transferred is then

=Y y". (8)

Table 1 illustrates the diffusion algorithm applied to the processor graph of

Figure 2.

2.3 A Unified Approach to Some Diffusion Algorithms

In this section we show how new variants of the diffusion algorithm can be derived,
by relating the load balancing problem to the (continuous) diffusion equation for
heat.

The 1-D diffusion equation is

2
ol Dal

— =0.
ot Ox?
Here [is the temperature, ¢ is the time variable and x the space variable.

If the forward Euler scheme is used to discretize time and central differences

are used to discretize space, then the equation becomes

Izt + At) = I(z,t) l(z — Az, t) — 2l(z,t) + l(z + Az, 1)
At =-b (Az))

or

(D)) a{ (lz(k) _ lz(ﬁ)l) n (l,(k) B l%)}'

This is just the diffusion algorithm (5), applied to a line. It is well known that
this explicit Euler scheme is stable and convergent if and only if o < 0.5.

If one applies the backward Euler discretization for time, one gets

Iz, t + At) — l(z, 1) D l(x — Az, t + At) — 2l(x,t + At) + l(x + Az, t + At)

At (Az)?

(10)

or
l§k+1) i a{ (l(k+1) _ lgﬁ-{l)) 4 (l(k+1) _ lZ(_lﬁ-l))} — k)

For a general graph, in contrast to (6), the backward Euler scheme gives
(I +L)1% Y = ® k=0,1,2,.... (11)

For partial differential equations (PDE’s), the backward Euler scheme is known
to be unconditionally stable. On graphs, it is easy to see that the above iterative
process will converge for any W > 0 (recall that L = AW AT), because the
matrix on the left hand side is positive definite with all eigenvalues greater than
one, except one eigenvalue that corresponds to the eigenvector of all ones. The
explicit and implicit Euler methods (9) and (10) can be further combined to given
the Crank-Nicholson scheme [7] for PDE’s, namely

Iz, t + At) — l(z,t)
At

=vR(1)+ (1 -v)R(2), ve€]|0,1] (12)

where R(1) and R(2) are the right-hand-side of equations (9) and (10) respec-
tively. Generalizing to graphs, the Crank-Nicholson scheme gives the following

diffusion algorithm:
(I +vD) 1% = (I — 1-=v) L) I®, vel0,1] (13)

It is known [7] that the Crank-Nicholson scheme (12) is stable for v € [1/2,1],
the authors therefore conjecture that the diffusion algorithm (13) also converges
for v € [1/2,1].

A so called parabolic load balancing method was proposed by Heirich and
Taylor [6] which was only applicable to mesh/torus like topologies. The method
was in fact a special case of the implicit Euler method (11) applied to a graph
with a uniform degree on all vertices, and with W = «a. To preserve the nearest

neighbour type communication, Heirich and Taylor used the Jacobi algorithm to

9

solve the linear equation (11). Because the graphs they studied have a uniform

degree of, say, s on all vertices, their method can be written simply as
163 = (1 4 as) 2 (z(’ﬂ — oL - s[)l(’”j;»_l)) . j=1,2....m k=1,2,...

Here m is the number of Jacobi iterations needed, chosen as a suitable integer. It
is easy to verify, using the Gershgorin disc theorem [5], that the spectral radius
of the iterative matrix a(L — sI)/(1 + as) is less than as/(1 + as). Thus for a
small time step «, the Jacobi iteration should converge very quickly. However a
small time step would make the overall convergence to equilibrium slow, and the
method would not have any particular advantage over the traditional (explicit
Euler) diffusion algorithm.

A large time step would reduce the number of time steps to convergence con-
siderably. In our numerical experiments we have experienced usually an order
of magnitude reduction in the number of time steps compared with the explicit
Euler method. However, a large time step o makes the spectral radius of the iter-
ative matrix a(L — sI)/(1 + as) close to unity, thus many Jacobi inner iterations
are needed. Overall our numerical experiments and limited theoretical analysis
on the Crank-Nicholson method (with implicit Euler method as a special case)
have yet to find a suitable choice of a that would make the method substan-
tially faster than the traditional (explicit Euler) diffusion algorithm, on general
graphs other than meshes. This experience suggests that alternative approaches
to improve the diffusion algorithm may be necessary. Section 3 gives one such

attempt.

2.4 A Global Algorithm

An algorithm that is faster than diffusion type algorithms, but which requires

global communication, was introduced in [9]. It is described here briefly as we

10

shall be comparing it with the improved diffusion algorithm. The algorithm is
motivated by the need to minimize the overall amount of load migration.

It was seen in Section 2.1 that the dynamic load balancing problem is equiva-
lent to that of solving the linear system of equations (3). The matrix A is of size
|V| x |E|. So the linear system has |V| equations and |E| unknowns. As there
are usually more edges than vertices in a graph (that is, |[E| > |V]), there are
usually more unknowns than equations and so the solutions to the problem are
not unique.

As an example, for the graph in Figure 3 with the load as specified, the “flow”
given by both Figure 3 (b) and Figure 3 (c) are valid. But schedule (c) is to be
preferred as it involves less data movement.

Assuming that the weighted Euclidean norm of the data movement is used as
a metric, then to minimize the data movement, the following problem needs to

be solved

1
Minimize §xTW_1x,
subject to Az =b.
Here W is a diagonal weighting matrix of the size |E| x |E|, representing the
unit cost of communication between vertices (processors). Applying the necessary
condition for the constrained optimization problem (see [4] and [9] for details)

gives

r=WAYd, (14)
where d is the vector of Lagrange multipliers. Substituting (14) into Az = b gives
Ld=b, (15)

with L = AW AT,

11

For the graph in Figure 3, assuming a unit weighting matrix of W = I, it is

clear that
2 -1 -1

-1 -1 2
For general graph, if W = I, it can be confirmed [9] that the matrix L is in

fact the Laplacian matrix of the graph, of dimension |V'| x |V, defined as

(L)ij = | deg(i), if i=j,
0, otherwise.

Here deg(i) is the degree of vertex 7 in the graph.
If the weighting matrix W is not a unit matrix, then L = AW AT is the

weighted Laplacian, of the form

—Cijs if Z#]v ZH];
(L)ig = Siowcw, i i=1], (16)
0, otherwise.

Here c;; is the entry of the weighting matrix on the edge between vertex ¢ and j.
Thus the problem of finding an optimal load balancing schedule is transformed
to that of solving the linear equation (15). Once the Lagrange multipliers are
found, then the load transfer vector is x = W ATd.
For any graph, each row m of the matrix A% has only two nonzero entries, 1
and —1, corresponding to the head and tail vertices of the m-th edge. Therefore
the amount of load to be transferred from processor i to processor j (assuming i

is the head and j the tail), along the m-th edge (i, j), is simply

Om = cij(d; — dj), (17)

12

where d; and d; are the Lagrange multipliers associated with vertices ¢ and j
respectively. Because of the expression (17), the Lagrange multiplier d can be
called the potential. To achieve load balance, the “flow” of load to be migrated
along each edge of the graph is simply a weighted difference of the potentials at
the two ends of the edge.

The linear system (15) can be solved using the parallel conjugate gradient
algorithm [5], with a diagonal preconditioner. The parallel conjugate gradient
algorithm involves global summations. This algorithm was found [9] to be in
general much faster than the diffusion algorithm on a parallel Cray T3D com-
puter.

As a simple example, considering the processor graph in Figure 2. The load for
each processor is given in brackets. The average load is 16.25 and the largest load
imbalance is (25 — 16.25)/16.25 = 53.8%. The Laplacian system (15) (assuming
that W = I) is now

1 -1 0 0 0 0 0 0 dy 25 —16.25 8.25
-1 3 0O -1 0 -1 0 0 dy 15 —16.25 —1.25
0 0 2 -1 -1 0 0 0 ds 15 —16.25 —1.25
o -1 -1 2 0 0 0 0 dy 15 —-16.25 —1.25
0 0 -1 0 2 -1 0 0 ds 15 —-16.25 —1.25
0 -1 0 0o -1 4 -1 -1 dg 15 —16.25 —1.25
0 0 0 0 0o -1 2 -1 dr 15 —-16.25 —1.25
0 0 0 0 0o -1 -1 2 ds 15 —16.25 —1.25

The solution of this linear equation is

(dy,...,ds) = (11.28,2.53, —2.22, —0.47, —2.72, —1.97, —3.22, —3.22).

These potentials are illustrated in Figure 4 in brackets. The “flow” (the amount

of load to be transferred) between two neighbouring processors is the difference

13

3 (-2.22)

v \g

4(:0.47) 5 (-2.72)

g
™

> (2.53)/5/. 6 (-1.97)

-\ A\
o
8(-3.22)
0% (-3.22)
1(11.28)

Figure 4: The potential and the amount to be migrated along each edge

between their potentials, and is shown along the edges in Figure 4. For example,
processor 1 needs to send to processor 2 a load of 11.28 — 2.53 ~ 9. After the

' is satisfied, the load for each processor will be (roughly) the same. For

“How’
example vertex 1 will have a load of 25 — 9 = 16, vertex 7 will also have a load
of 15+ 1+ 0= 16.

Table 2 illustrates the algorithm applied to the processor graph of Figure 2.
Here the load at iteration k is derived as {®) = 10 — Ld®) where d*) is the
potential at iteration k.

Although this global algorithm is motivated by minimizing the Euclidean
norm of the “flow”, it came as a surprise from numerical experiments [9] that the
Euclidean norm of the “flow” created by the diffusion algorithm was very close
or equal to that of the global algorithm .

We can now prove that the diffusion algorithm also satisfies an optimal prop-

erty.

14

2.5 An Optimal Property of the Diffusion Algorithm

The induced graph related to the diffusion algorithm (5) is defined as the original
graph but with edges (i, j) removed if the coefficient ¢;; = 0. It can be proved
[3] that the diffusion algorithm will converge to the uniform distribution if the
following assumption holds.

Assumption 1 The diffusion algorithm (5) is assumed to satisfy the following
e c; >0, fori<«y;
® i inj Cj <1, forieV;
® Cij = Cjis
e the induced graph is connected.

Furthermore, the matrix L is a symmetric positive semi-definite matrix with

a row-sum of zero, and its eigenvalues satisfy the following [3].

Theorem 1 Under Assumption 1, the matriz L has eigenvalues
2SN 2 AV m1 2 2 >N =0 (18)

and that the vector z = (1,1,...,1)" is within scaling the only eigenvector corre-

sponds to the eigenvalue of 0.

The “flow” given by the diffusion algorithm upon convergence, is the total
accumulated load transfer. As pointed out before, the diffusion algorithm will
converge to the uniform load under Assumption 1. It is proved in the following
that the sum of the load transfer at each iteration also converges.

At iteration k of the diffusion algorithm, the amount of load transferred, along

the m-th edge (4,), equals the load difference between the two vertices, scaled

15

by the edge weight. That is,

m

In matrix form this is
y® = W AT |®)

where

y(k) _ (5(k) 5(k) 5(k))T

1 »Y2 9=y |E|

is the vector of “flow” along the edges at iteration k. The sum of the load

transferred after the first k iterations on each of the edges is given by the vector

k
y(i) = w AT Z 1@

k
1=0 1=0

= W AT (i (I—L)’) 10,

i=0
Theorem 2 For the diffusion algorithm (5), under Assumption 1, the sum of

the load transferred converges, that is, the vector Y% o y® converges as k — oo.

Proof Since L is a symmetric matrix, the vector of initial load 1) can be
expressed as the linear combination of |V| mutually orthogonal eigenvectors of

the matrix L,
\4

Z(O) = Z a; Ug,
=1

where u; is the eigenvector corresponds to the i-th eigenvalue A; of the matrix

L. Because of Theorem 1, it can be assumed that u; = z = (1,1,...,1)7 and
ap = 2710 /|V] =1.
Thus

ij y@ = w AT (zkj (I—L)i> 1©

=0

Because ATu; = ATz =0, and 3F (1 — \;)" = 1/); for j > 2 (notice that from
Theorem 1, |1 — ;| < 1 for i > 2), thus ¥F_;, y® converges to
v,
P?’f4T jz: 5%1@.
j

=2

Denote d as the vector
14

al .
d ::jz: :K%Uj.
j=2 i
From the proof of Theorem 2 the total accumulated amount of load transferred,
in other words the “flow” calculated by the diffusion algorithm, is given by the

vector

z =Y y® = wA"a (19)
=1

Having proved that the accumulated load migration given by the diffusion
algorithm converges, one can now prove that this “flow” is optimal in the following

sense:

Theorem 3 Under Assumption 1, the total amount of load migration = (the
“flow”) generated by the diffusion algorithm (5) is the solution of the following
minimization problem
Minimize zz'W ™'z,
(20)
subject to Az =b.
Here W is the diagonal matriz of edge weights, these weights are assumed to be
positive so that W1 exists. The matriz A is the vertez-edge incident matriz

defined in (4) and the vector b is the vector of load imbalance (2).

Proof Because the load migration scheme generated by the diffusion algorithm

satisfies (19), it can be confirmed that Az = b. This is because

Az = AWATd=1Ld

17

Now if z is not the minimum of (20), then there exists a vector Az # 0 such that

Alx + Az) =b
and
(z+Az)" Wz +Ar) < 2" W'a.
Therefore
AAz = 0
and
20" W Az + (Az)" WAz < 0. (21)

Because of (19), the first term in (21) becomes
2 WAz = 2WATA) WAz = 2d" AAz = 0,

so (21) gives
(Az)"W Az < 0. (22)

This inequality is not possible since W is a diagonal matrix consisting of all
positive elements and Ax # 0. Thus x has to be the solution of the minimization

problem (20). m

This theorem implies that the “flow” generated by the diffusion algorithm
is exactly the same as that generated by the global algorithm, provided that
the same weighting matrix W is used for both algorithms. The fact that the

diffusion algorithm actually minimizes a weighted Euclidean norm of the “flow”

18

is perhaps not surprising after all, since the diffusion algorithm mimics the process
of diffusion in nature, and nature always follows the principle of minimum energy!

The optimal property of the diffusion algorithm is not an endorsement of the
algorithm. The diffusion algorithm suffers from poor convergence on graphs that
are not rich in connectivity [1, 3, 9]. However, in developing newer and faster
algorithms, it is sensible, from the point of view of reducing the communication

cost, to make sure that they also have this optimal property.

3 Improving the Diffusion Algorithm

The diffusion algorithm, as described by equation (6), is in the form of a classical
stationary iterative algorithm. As such it is susceptible to slow convergence when
the spectral radius of the iterative matrix is close to one.

Let [be the average load, as defined in (1). Let z be the vector of all ones.
Then the load imbalance e**!) at iteration k + 1 is e+ = |*+D) _ [z Let

L = AW AT be the weighted Laplacian matrix (16), from (6) one has
1%+ = (1 — L) 1%,
Subtract both side by lz, because Lz =0,

bt = (1 — L) e® = (I - L)1 e,

3.1 Motivation and Preliminaries

For the rest of this paper it is assumed that Assumption 1 holds. The motivation
of the improved diffusion algorithm is as follows. Consider a two-step diffusion
algorithm, e®*1) = (I — L)%Y = gy(L)e®* Y, where ¢,(\) = (1 — \)? =
1 — 2\ + A2 is a polynomial of degree 2. However this polynomial may not be

the one which makes the norm of the load imbalance ||g>(L)e* V|| small. It is

19

possible that there is a polynomial of degree 2, py(\) = 1 + a\ + bA?, such that
|[p2(L)e®*~Y|| is smaller. A 2-step diffusion algorithm based on the polynomial
p2 would therefore converge faster.

In general, for the diffusion algorithm, the load imbalance satisfies
e®) = g, (1)e

where ¢;(A\) = (1 — A\)* is a polynomial of degree k. Here again this particular
polynomial ¢, may not be close to the best one. To improve the diffusion algo-
rithm, it is necessary therefore to choose a polynomial p; such that |[py(L)e®]|
is minimized, or at least approximately minimized. The improved diffusion algo-
rithm is then [®) = p,(L)I(9). In order that the summation of the load at each
iteration is conserved, it is necessary that z71*) = 2710 with z the vector of
all ones. Because z is an eigenvector of L of zero eigenvalue, this requires that
2710 = 2Tp (L)1 = pi(0)2T1O), or pi(0) = 1.

To facilitate the analysis, let u; be the normalized eigenvector corresponding
to eigenvalue)\; of the weighted Laplacian matrix. Because L is symmetric it
can be assumed that the u; are orthogonal to each other and that the initial

0)

imbalance e(® can be expressed as the sum of this orthogonal set

14
6(0) = Z a; Uj.
i=1

Due to Theorem 1, one can assume that u; = z = (1,1,...,1)7. Notice that the

sum of load imbalances over all vertices should be zero,

T

= ule® = ayju|* = 0,
this means that a; = 0. Therefore

\4
e®) = pr(L)e® = 3" aipp(N)us,
=2

20

and the Euclidean norm of the error is
k)| |2 i 2 (N2 Vi 2 0)([2
@I = 3 (pr(Aa))? (@:)? < (mix (W)) 12 (23
=2
Therefore to give the load imbalance the minimum possible upper-bound, the
polynomial p; should be chosen such that

|V]
miax [pe (0| (24)

is minimized, in addition to p,(0) = 1.
Unfortunately, the polynomial which minimizes the term (24) is not read-

ily solvable without explicit knowledge of all the positive eigenvalues \;, i =

2,3,...,|V|. However, as an approximation, taking into account the fact that
max ()| < max [pe(V)|
i=2 YT ey ’

one can seek a polynomial of degree k, such that py(0) = 1 and the maximum

error over the interval [Ag, Ay],

max [pg(A)], (25)

XAy
is minimized. By replacing (24) with (25), one has made an approximation. In
return, this simplified min-max problem over the continuous interval has a known
solution, expressed in terms of the Chebyshev polynomials [15].

The Chebyshev polynomial Ty (1)) is a polynomial of degree & such that
Tii1(A) = 2XTk(N) — T—1(N) (26)

and

TO()‘) = 1: Tl()‘) =A

Over the interval [—1, 1], the polynomial z=T}(A) is the polynomial closest to
zero, among all polynomials of degree k£ that have a coefficient of one for the

highest order term. The Chebyshev polynomials can also be written as
Ti(N) = cos(karccos())), [N <1, (27)

21

or

Th(\) = % (- VvV V-], > (28)

The polynomial of degree k, which satisfies px(0) = 1 and minimizes the maxi-
mumn error over the interval [Ag, Ajy], can be expressed in terms of the Chebyshev

polynomials [15] as

i -0
where
(=2

is a linear transformation from [Ag, A v(] to [—1,1].

3.2 Calculation of the Loads

Having found (approximately) the best polynomial, it is necessary to find a re-

cursive procedure for the iteration
l(k-i—l) — pk+1(L)l(0)

Denote Cy, = T3 (£(0)) and Y = §(L) = (2L — A2 — A\y))/(Ajv| — A2), then by

(26),
Jk+1) Tk+1(Y)l(0) — QYTk(Y) - Tk—l(Y)l(o)
Ck+1 Ck—|—1
4L Cy Cr1 (-
= [——— +26(0) | 1% — 2 k=L),
(/\v — A &)> Cri1 Cri1
Because of (26),
Crr1 = 2£(0)Cy — Cy_1, (30)

let Qg1 = 25(0)0}6/0]64_1, then

4L
E(0) (N — A2)

15D = qppy (1 +3) 1®) 4 (1 — o)1,

22

Substituting £(0) = —(A2 + Ajy))/(Ajy) — A2) into the above equation gives

L
5) I®) (1 — e)I* Y, k=1,2,... (31)

where 3 = (A2 + Ajy|)/2. For the first iteration,

(4D = Qk+1 (I -

0 _ %(f))l(m _ (- %)lm)_ (32)

The coefficient aj.; in (31) can also be calculated recursively. Dividing both
sides of (30) by 2£(0)Cy, gives

Cry1 1 Cr—1

2£(0)Cr ~ 2£(0)Cy

or
1

1 —apg’
where g = 1/(2£(0))%. The iteration starts with

Opy1 = k:1,2,

a; = 2£(0)Cy/Cy = 2£(0)/€(0) = 2.

3.3 Calculation of the Potentials

Having worked out the load at each vertex during each iteration, it is necessary
to know the amount of load transferred during each iteration. For this purpose
the idea of the potential, described in equation (17) of Section 2.4, is utilized.
Define the potential at iteration k as d*), a vector of size |V'|. The total amount

of load transfer up to iteration k is
z®) = W AT ") (33)

The current load on each vertex is therefore the initial load minus the load trans-
ferred, that is,
1% = 1O — AW ATd® = 1O — 14d®), (34)

23

At this point it is not certain that such a potential vector d*) exists for the
iterative process defined by (32) and (31). The existence of the potential vectors
shall be proven in the following by induction.

For k = 0, equation (34) is clearly valid with
d® = 0.

For k = 1, because of (32), equation (34) is valid with

1
d = Z10)
B

Assume that equation (34) is valid for up to iteration &, then from (31),

L
l(k+1) = Og41 (I - E) l(k) + (1 - Oék+1)l(k_1)

= % L® 4 ay,, (lw) _ Ld(k)) (1=) (l(m _ Ld(H))
1
= 19 _r [a,m (d(k) + Bl(k)> +(1- akﬂ)d(’“)] :
It follows that (34) is valid at iteration k + 1 with

1
d*) = a4 (d(k) + Bl(k)> + (1= opp)d® Y, k=12, (35)

3.4 Calculation of the Load Transfer

The transfer of load can be executed in cumulative fashion, when the algorithm
has converged, using formula (33). Alternativly it can be carried out at each
iteration. Denote by y*+Y € RIVI the load transfer at iteration k + 1. This load
transfer is the difference of total load transferred up to iteration k£ + 1, and that

up to iteration k. That is,

yED) = kD) _ 56 — g7 AT (gD gy,

24

Substituting (35) into the above equation gives
1
y*B+) = AT la,m (d(’“) + El(k)> + (1 — apyq)d®Y — d(’“)]
= wAT l(ak“ — 1)(d® — @k=y 4 %l(k)]

B
= (o — Dy® + %WATZ(’“), k=1,2,...

For the first iteration

y O = AT (@D — g0)) = %W AT

3.5 The Improved Diffusion Algorithm

The improved diffusion algorithm can now be stated in full as follows. The
algorithm requires the knowledge of the largest and smallest positive eigenvalues

of the weighted Laplacian matrix. The following notation is adopted:

®)\, Ay;: minimum and maximum positive eigenvalues of the weighted

Laplacian matrix L;

l;: current load on processor 7;
e d;: current potential on processor ;

e y;;: amount of load to be transferred from processor ¢ to the neighbour

processor j at this iteration;

cij: the coefficients that satisfied Assumption 1.

Algorithm CHEBY The improved diffusion algorithm

o 1. Initialization: B = (As + Av))/2, v = (Av| — N)/2, g =7*/(43?) and
det =0, ieV.

25

e 2. For each vertex i1 € V, do k = 1,2,... while the stopping criterion not

satisfied

— if (k=1) then
a). a=2,
b). d; < 1;/5,
¢) yi =cii(li— 1)/, i,
d). i1l — Yo Yij-
— else
e). a<+1/(1-ag),
f). & =d,
g). di <+ a(d;+1;/8) + (1 — a)d,
h). et = drem,
i) yij < (a—= 1Dy +acii(li = 1;)/B, i+,
7)== Y Vi

— end if

Notice that this algorithm, like the diffusion algorithm, only requires commu-
nication for sending/receiving load to neighbouring processors, at Steps 2(c) or
2(i). There is no requirement for global communications, except when a conver-
gence check is needed.

Table 3 illustrates the improved diffusion algorithm applied to the processor

graph of Figure 2.

3.6 Convergence Analysis

The convergence rate of the improved diffusion algorithm can be easily analyzed

using the definition of the polynomials p; and the properties of the Chebyshev

26

polynomials.

Using (23) and (29),

111"

IN

Vv
(mix ()) 1€
< max IO (@]
|

A2 <A<y
T,(EWN)
73(£(0))

Because £()) € [—1,1] and |£(0)| = [Ao+Av|/|Ajvj—A2| > 1, using the alternative

2

2.

A2<ALA v

expressions (27) and (28) for the Chebyshev polynomials,

e®)]| cos(k arccos(&(N)) 1€

EE L (60) - EOP 1) + (60 + EOP = 1)

IN

2
(¢0) = /&0 —1)" + (£(0) + e (0 — 1)’
| 2(€0) + fe0) - 1)':]c O
1+ (£(0) + /€(0)> = 1)
< 260+ EOP 1] 11

The error norm is reduced by approximately a factor of p = [£(0)+4/£(0)? — 1|

per iteration, which is
Ao +)\|V| </\2 + /\V|)2
p =60+ V) [l Sy

Vv =V

B Veond — 1
v eond + 1’

where cond = /\|V‘/ Ay denotes the condition number of the weighted Laplacian

matrix.

27

This average rate of convergence is better than that of the algorithm which

uses the “best” polynomial (29) of degree one, that is,

z“+U::<I—-%>z%X (36)

Algorithm (36) has an average rate of convergence of

Avj — A2 cond —1
Avi+ A2 cond+1

P1
The diffusion algorithm (5) can be written as
[*F) = (1 — L) 1%,
It has therefore an average rate of convergence of
pr =max {|1 = Xs|, [1 = Ay |}

It can be proved that

p2 2 p1 2 p-

3.7 An Optimal Property

It was proved in Theorem 3 that the diffusion algorithm has a minimum prop-
erty. Namely, the “flow” generated by the algorithm has the minimum weighted

Euclidean norm. The same theorem is valid for the improved diffusion algorithm.

Theorem 4 The “flow” generated by the improved diffusion algorithm (Algo-
rithm CHEBY) minimizes x*W 1z, the scaled norm of the load migration, with
the diagonal matrizc W of size |E| X |E|, consisting of the edge weights c;; used

in the algorithm.

Proof The proof follows from that of Theorem 3, if one can prove that the
amount of load transfer up to iteration k, z*), converges to a vector z and

furthermore, that there exists a vector d such that x = W A”Td and Az = b.

28

Consider the sequence of potentials d®) of the algorithm. Denote d*) =
d®) — (27d®))z/|V| the normalized potential vector (with a sum of zero), where

z is the vector of all ones. From (34) one has
1O — &) = 1q®) = [q®). (37)

Expand d®) using the normalized eigenvectors of L, because d*) is orthogonal to
the eigenvector u; = z,

o
d®) = Z a,(-k)ui.
i=2

Substituting to (37) gives
\4
10 1) = 3™ \a®.
i=2

Thus because of (18),

14
— ’C 2
12912 = 32 (@) < 11O = 191725,
1=2

Since [¥) converged to the uniform load [z, it follows that ||d*)|| is bounded. So

there exists a subsequence {k;} such that

d*) = d, ki — oo

Because of (37), Ld =1 — Iz, so

L(d® —d)=1® 1z —0.

It can now be proved that d'*) converges to d, as follows. The vector d*) —d
is orthogonal to the eigenvector u; = z. Expanding d*) — d using the rest of the

eigenvectors of L gives

29

Multiplying both side with L, it follows that

v, o

S 6N = L (d® — d) — 0.

1=2
Therefore

) B \4 N2 |V .
1a® —dll =32 (o) < 11300 a2/ 0,
i=2 1=2

or d® —d

Having proved that d*) converges, it follows from (33) that z(*), the amount

of transfer up to iteration k, also converges
z®) = WATd®) = wATd® - wATd =z

Furthermore,

Ar = AWATd=Ld =19 — [z =b.

4 Numerical Experiments

In this section the improved diffusion algorithm is compared with the diffusion
algorithm and the fast global algorithm.

It was found in [9] that the global algorithm is in general faster than the
diffusion algorithm on Cray T3D, using up to 256 processors. One is interested
in knowing how the algorithms scale beyond hundred of processors. For this
reason the algorithms were implemented on a serial computer to simulate the
result of these algorithms on up to a few thousand processors. Algorithms were
compared by the number of iterations they took to converge to the same criterion.

The convergence criterion for all the algorithms was

-1
load imbalance = max;cy {ZT} < €

30

where € is the maximum load imbalance tolerable overall all vertices. Two toler-
ances were used, namely € = 0.1 and € = 0.01, representing a loose and a tight
tolerance to the load imbalance.

Test results for algorithms on random graphs will be given. The processor
graphs resulted from unstructured mesh applications usually do not have a uni-
form structure, and can be represented reasonably well by random graphs. How-
ever the algorithms were also tested on uniform graphs such as meshes, and the
results were consistent with those on random graphs and are thus not presented.

A random graph generator was written. Given |V vertices, the generator
randomly linked vertices until the average degree of the graph reached the preset
value. The graph was then checked for its connectivity, and extra edges were
added if the graph was found to be disconnected, in which case the final degree
of the graph could be slightly larger than the preset value due to the extra edges.
The resulting graphs were used to test the algorithms. The preset values for the
average degree were 1, 3, 5, 7 and 9. For each value, random graphs of size 500,
1000 and 2000 were generated.

The initial load on each vertex was set according to two schemes.

e Random initial load: the load on each vertex was set to be 200 x ran, with
ran a random number. Thus the average load was about 100 and initial

load imbalance was around (200 — 100)/100 = 1.

e Step-Function initial scheme: the load on one vertex was set to 100|V|, and
the load on all other vertices was set to 0. Thus the average load was 100

and initial load imbalance was (100|V| — 100)/|V| = |V| — 1.

These initial load schemes are meant to test the ability of the algorithms on
two typical kinds of load imbalance: those caused by the fluctuation of load across

the processors, and those caused by a sudden change of load on one processor.

31

Notice that all of the algorithms are invariant to a uniform addition or subtraction
of a constant to the initial load, it is therefore not necessary to test other related
initial load schemes, such as /; = 100 + 200 * ran

Five algorithms were tested, and the results are listed in Tables 4-7. The
global algorithm is denoted as CG, the diffusion algorithm is denoted as DIFF and
the improved diffusion algorithm is denoted as CHEBY. Two restarted versions
of CHEBY were also tested, they are denoted as CHEBY1 and CHEBY 10, which
are CHEBY but restarted every 1 and 10 iterations respectively. The reason
for testing the restarted algorithms is as follows. The diffusion algorithm has the
advantage that it is able to handle load that changes while the diffusion algorithm
is being applied. The improved diffusion algorithm CHEBY is not designed to
cope with such a situation. However it is possible to use a restarted version of the
algorithm to take into account the load changes. For this reason one is interested
in knowing how such restarted algorithms compare with the diffusion algorithm.

The coefficient ¢;; for the weighted Laplacian was chosen as in equation (7).
All algorithms were run to convergence, the accumulated amount of load transfer
was then use to migrate loads to neighbouring processors.

In unstructured mesh based applications, it is important to decide not only the
amount of load to be transferred, but also which mesh nodes of the subdomains
are to be migrated. This is beyond the scope of this paper and we refer to [12]
for further details.

If a processor needed to send out a total of OUT units of load, and this was
greater than the amount of load it currently had (denote this amount as ON),
then the actual amount sent out was scaled by a factor of ON/OUT, rounding to
an integer. The number of iterations it took for this process to converge is given
in the last column of the tables, under the heading MIGRATE. Because of the

minimization property of CG, DIFF and CHEBY, the three algorithms produce

32

exactly the same amount of accumulated load transfer (subject to numerical
accuracy). So the number of iterations for the MIGRATE process is the same
for all three algorithms. It is also easy to prove, following the same line as the
proof of Theorem 4, that the restarted CHEBY algorithms have the minimization
property as well, and thus the same number of iterations for the MIGRATE
process.

A disadvantage of improved diffusion algorithms is that it is necessary to
know the smallest and largest positive eigenvalues of the weighted Laplacian
matrix. It is therefore only suitable if the processor graph is known in advance and
does not change, and many dynamic load balancing steps are to be carried out,
thus off-setting the one-off cost of computing the eigenvalues. The two extreme
eigenvalues were calculated using LAPACK for |V| < 1000. For |V| > 1000, the
memory requirement of storing the whole matrix became excessive. So a Lanczos
algorithm was used for calculating the smallest positive eigenvalue and a Power
algorithm was used for the largest eigenvalue. Both algorithms were iterative and
required the storage of only a few vectors. Both algorithms were terminated at a
tolerance of 107°. It was found however that the Chebyshev iterative process was
sensitive to the accuracy of the eigenvalues. In particular, slight over prediction
of Ay or under prediction of Ay, could cause the process to diverge. For this
reason when the iterative algorithms were used to calculate the eigenvalues, the
calculated eigenvalues, A; and Ay, were modified slightly to 0.95A; and 1.05Ay
respectively.

It is seen from the tables that in terms of the number of iterations, all algo-
rithms performed better as the connectivity of the graph increased. When the
average degree was higher than 5, all algorithms converged in less than 280 it-
erations. Overall, algorithm CG was the best for all the graphs. The improved
diffusion algorithm CHEBY out-performed the diffusion algorithm DIFF.

33

From Table 4, when applied to a random initial load, with a loose tolerance
of e = 0.1, the diffusion algorithm DIFF did not perform too badly compared
with CG and CHEBY. Reading this table alone might suggest that the more
sophisticated algorithms may not be necessary. The reality is that DIFF is a
stationary iterative algorithm, and like other stationary type iterative algorithms
(e.g., Jacobi, Gauss-Seidel methods for linear systems), it is good at reducing the
high frequency errors (see [2] for definition), but very slow in reducing the low
frequency errors. When the initial load is random, neighbouring vertices tend to
have quite different loads, but the average load over a neighbourhood is likely to
be close to the average over the whole graph. Thus there is a large component
of high frequency error, and as a result the diffusion algorithm can quickly damp
out this error. If, however, the initial error does not oscillate as much as in the
case of random initial load, the diffusion algorithm should take a long time to
achieve even a loose load balance. This is pseen in the case of a step-function
initial load, in Table 6. Likewise, when the convergence criterion is tighter, DIFF
also suffers, as seen from Table 5 and Table 7.

The restarted algorithms CHEBY10 and CHEBY1 were in general better than
DIFF, although the two restarted algorithms behaved erratically on three occa-
sions when applied to problems with random initial load. For example, CHEBY10
took 61023 iterations on the graph of 2000 vertices with an average degree of 2.
The reason is not clear.

Comparing CHEBY with CG, it is seen that the former took around twice
the number of iterations on problems with random initial loads, and around 3
times as long on problems with step-function initial loads. It has the advantage
that global communication is not needed. CHEBY is thus a viable alternative to

CG when the cost of eigenvalue calculations can be off-set.

34

5 Conclusions

In this paper an improved diffusion algorithm is derived based on Chebyshev
polynomials. An iterative procedure to calculate the potential is also given.

Convergence analysis and numerical tests show that the improved diffusion
algorithm is significantly faster than the diffusion algorithm, at the extra cost of
the calculation of two extreme eigenvalues. It is also shown that the both the dif-
fusion algorithm and the improved diffusion algorithm have the minimum “flow”
property. This means that when using the same edge weights, both algorithms
as well as the global algorithm generate the same minimum “flow” (subject to
numerical error).

The improved diffusion algorithm is a viable alternative to the global algo-
rithm (CG) when global communication is not desirable, and when the cost of
eigenvalue calculations is not significant, e.g., when the processor graph is known
in advance and does not change, and many dynamic load balancing steps are to
be carried out, thus off-setting the one-off cost of computing the eigenvalues. The
restarted version of the algorithm may also be used for applications where the

load changes rapidly.

Acknowledgments The authors would like to thank the referees for very con-

structive and detailed review of the paper.

35

References

[1] J. E. Boillat, Load balancing and Poisson equation in a graph. Concurrency:

Practice and Experience 2 (1990) 289-313.
[2] W. L. Briggs, A Multigrid Tutorial (STAM, Philadelphia, 1987).

(3] G. Cybenko, Dynamic load balancing for distributed memory multi-
processors. J. Parallel Distrib. Comput. 7 (1989) 279-301.

[4] R. Fletcher, Practical Methods of Optimization (John Wiley and Sons, Chich-
ester, 1987).

[5] G. H. Golub and C. F. Van Loan, Matriz Computations (Johns Hopkins

University Press, Baltimore, 1981).

[6] A. Heirich and S. Tayler, A parabolic load balancing method, Technical Re-
port, Caltech Computer Science Department, Caltech-CS-TR-94-13, 1994.

[7] K. A. Hoffmann, Computational Fluid Dynamics (Engineering Education Sys-
tem, Taxas, 1989).

[8] G. Horton, A multi-level diffusion method for dynamic load balancing, Par-

allel Computing 9 (1993) 209-218.

9] Y. F. Hu, R. J. Blake and D. R. Emerson, An optimal migration algorithm
for dynamic load balancing, Concurrency: Practice and Ezperience 10 (1998)

467-483.

[10] A. Pothen, D. H. Simon and K. P. Liou, Partitioning sparse matrices with
eigenvectors of graphs, SIAM J. Matriz Anal. Appl. 11 (1990) 430-452.

[11] J. Song, A partially asynchronous and iterative algorithm for distributed
load balancing, Parallel Computing 20 (1994) 853-868.

36

[12] C. Walshaw, M. Cross and M. G. Everett, Parallel dynamic graph partition-
ing for adaptive unstructured meshes, J. Parallel Distrib. Comput. 47 (1997)
102-108.

[13] C. Z. Xu, and F. C. M. Lau, Analysis of the generalized dimension exchange
method for dynamic load balancing, J. Parallel Distrib. Comput. 16 (1992)
385-393.

[14] C. Z. Xu, F. C. M. Lau, B. Monien and R. Liiling, Nearest-neighbor algo-
rithms for load balancing in parallel computers, Concurrency: Practice and

FEzperience 7 (1995) 707-736.

[15] D. M. Young, Iterative solution of large linear systems (Academic Press,

NewYork, 1971).

37

Table 1: Applying the diffusion algorithm on the graph of Figure 2: the load on

each processor at each iteration

Iteration 1 2 3 4 5 6 7 8

0 25.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00

—_

22,50 17.50 15.00 15.00 15.00 15.00 15.00 15.00

2 21.25 17.63 15.00 15.63 15.00 15.50 15.00 15.00
3 20.34 17.61 15.21 15.92 15.10 15.63 15.10 15.10
4 19.66 17.47 1541 16.10 15.24 15.71 15.21 15.21
5 19.11 17.32 15.58 16.21 15.39 15.77 1531 15.31
6 18.67 17.18 15.73 16.28 15.53 15.82 1540 15.40
7 18.29 17.05 15.85 16.32 15.65 15.86 15.48 15.48
8 17.98 16.94 1594 16.35 15.76 1591 15.56 15.56
9 17.72 16.85 16.02 16.36 15.85 15.95 15.63 15.63
10 1751 16.76 16.08 16.37 15.92 1598 15.69 15.69
11 17.32 16.69 16.12 16.37 15.99 16.01 15.75 15.75
12 17.16 16.63 16.16 16.37 16.04 16.04 15.80 15.80
13 17.03 16.58 16.19 16.36 16.08 16.06 15.85 15.85
14 16.92 16.54 16.21 16.36 16.11 16.08 15.89 15.89
15 16.82 16.50 16.23 16.35 16.14 16.10 15.93 15.93
16 16.74 16.46 16.24 16.35 16.16 16.12 15.96 15.96
17 16.67 16.43 16.25 16.34 16.18 16.13 16.00 16.00
18 16.61 16.41 16.26 16.33 16.19 16.15 16.02 16.02
19 16.56 16.39 16.26 16.33 16.21 16.16 16.05 16.05
20 16.52 16.37 16.26 16.32 16.21 16.17 16.07 16.07
21 16.48 16.36 16.27 16.31 16.22 16.18 16.09 16.09
22 16.45 16.34 16.27 16.31 16.23 16.19 16.11 16.11
23 16.42 16.33 16.27 16.30 16.23 16.19 16.12 16.12

38

Table 2: Applying the global algorithm on the graph of Figure 2: the load on

each processor at each iteration

Iteration 1 2 3 4 5 6 7 8

0 25.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
1 16.20 23.76 14.77 15.17 15.30 14.51 15.15 15.15
2 16.22 16.23 15.03 19.19 15.12 17.85 15.18 15.18
3 16.25 16.26 17.27 16.51 16.00 15.75 15.99 15.99
4 16.26 16.22 16.08 16.54 17.02 15.78 16.05 16.05
5 16.24 16.26 16.37 16.03 16.39 16.63 16.04 16.04
6 16.25 16.25 16.25 16.25 16.25 16.25 16.25 16.25

Table 3: Applying the improved diffusion algorithm on the graph of Figure 2:

the load on each processor at each iteration

Iteration 1 2 3 4 3 6 7 8

0 25.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
1 21.02 18.98 15.00 15.00 15.00 15.00 15.00 15.00
17.84 1790 15.00 17.37 15.00 16.89 15.00 15.00
16.83 16.81 16.67 16.76 15.80 15.54 15.80 15.80
16.53 1597 16.61 16.55 16.51 1599 15.92 15.92
16.17 16.33 16.49 16.24 16.56 16.25 15.98 15.98
16.15 16.27 16.34 16.37 16.40 16.26 16.11 16.11

N O Ot = W N

16.21 16.24 16.36 16.33 16.26 16.20 16.20 16.20

39

Table 4: Number of iterations for the 5 algorithms, with random initial load,

e=0.1
V| degree diameter CG CHEBY CHEBY10 CHEBY1 DIFF MIGRATE
500 2 305 273 448 2927 885 1329 8
500 3 16 17 23 29 o4 80 2
500 5 9 7 10 10 30 42 2
500 7 6 4 8 8 11 13 2
500 9 4 4 6 6 11 14 2
1000 2 612 085 871 13420 108523 1773 12
1000 3 29 24 43 65 95 80 3
1000 5 9 8 10 10 27 38 2
1000 7 6 6 8 8 17 23 2
1000 9 5 4 8 8 19 26 2
2000 2 1138 1221 1809 61023 6950 9955 43
2000 3 35 32 o7 102 250 353 4
2000 5 14 13 18 20 83 116 2
2000 7 7 3 9 9 20 26 2
2000 9 7 3 9 9 16 22 2

40

Table 5: Number of iterations for the 5 algorithms, with random initial load,

e =0.01

V| degree diameter CG CHEBY CHEBY10 CHEBY1 DIFF MIGRATE

500 2 305 361 774 11327 20721 28299 8

200 3 16 26 39 92 266 396

200 5 9 11 16 17 29 84 2

500 7 6 7 13 12 30 41 2

200 9 4 6 9 9 20 27 2

1000 2 612 733 1505 47030 - 134920 12
1000 3 29 34 71 139 758 1118

1000 5 9 13 16 17 29 85 2

1000 7 6 11 13 13 37 22 2

1000 9 3 7 13 13 38 o4 2

2000 2 1138 1392 3124 - - - 43
2000 3 35 40 94 232 1415 2006 4

2000 5 14 18 30 37 199 280 2

2000 7 7 9 14 15 42 o7 2

2000 9 7 8 15 16 36 49 2

41

Table 6: Number of iterations for the 5 algorithms, with step-function initial

load, e = 0.1

V| degree diameter CG CHEBY CHEBY10 CHEBY1 DIFF MIGRATE

500 2 305 370 1064 18610 117823 177123 234
200 3 16 28 92 84 259 385 15
200 5 9 12 17 20 43 47 7
500 7 6 8 17 18 a0 36 6
200 9 4 8 13 12 22 23 3
1000 2 612 627 2200 40073 115278 173928 377
1000 3 29 40 105 250 1607 1525 24
1000 5 9 15 22 23 47 67 8
1000 7 6 10 17 20 31 39 7
1000 9 3 9 13 14 29 31 6
2000 2 1138 1426 4914 199966 - - 1021
2000 3 35 92 154 458 1538 2181 34
2000 5 14 15 27 33 99 82 8
2000 7 7 14 24 28 46 63 7
2000 9 7 9 19 22 30 40 6

42

Table 7: Number of iterations for the 5 algorithms, with step-function initial

load, e = 0.01

V| degree diameter CG CHEBY CHEBY10 CHEBY1 DIFF MIGRATE

500 2 305 379 1384 26919 - - 234
200 3 16 36 62 108 464 691 15
200 5 9 15 22 26 66 82 7
500 7 6 12 21 24 71 67 6
200 9 4 10 16 17 33 41 5
1000 2 612 679 2767 72349 - - 377
1000 3 29 47 138 347 2515 2879 24
1000 5 9 18 28 30 7 111 8
1000 7 6 13 21 26 90 63 7
1000 9 3 10 17 20 40 43 6
2000 2 1138 1463 6104 - - - 1021
2000 3 35 61 188 998 2887 4094 34
2000 5 14 19 34 42 97 134 8
2000 7 7 16 30 36 83 115 7
2000 9 7 12 24 27 53 72 6

43

