The Effect of the Grid Aspect Ratio on the Convergence of
Parallel CFD Algorithms

Y. F. Hu, J. G. Carter and R. J. Blake

Daresbury Laboratory, CLRC, Warrington WA4 4AD, United Kingdom

In this paper a parallel SIMPLE based incompressible axisymmetric CFD code
is considered. It is found that the grid aspect ratio has a strong influence on the
convergence rate of the code on several processors relative to that on one processor. This
phenomenon is analysed and is attributed to the strong influence of the cell aspect ratios
to the structure of the pressure correction equation — a Poisson-like equation. This in
turn affects the effectiveness of the parallel preconditioner for the conjugate gradient
algorithm used in solving the pressure correction equation. The problem is further
confirmed by studying the Poisson equation. A remedy is suggested and demonstrated
to improve the convergence of the parallel CFD algorithm.

1. PROBLEMS WITH LARGE ASPECT RATIO

The code considered is one for calculating steady-state incompressible turbulent
chemical reacting pipe flow. A cell centred finite volume approach is used to discretise
the equation. The coupling between velocity and pressure is dealt with using the SIM-
PLE procedure ([1]). The discretised momentum equations are solved with line implicit
scheme (using TDMA for the resulting tridiagonal systems). The pressure correction
equations, being symmetric, are solved using the conjugate gradient algorithm with In-
complete LU (ILU) factorization as the preconditioner. A fixed number of iterations is
used, usually 2 for the momentum equation and 10 for the pressure correction equation.

The code was parallelised using the usual domain decomposition strategy. The com-
putational domain is split into a number of subdomains and each of the subdomains
is allocated to one processor. A ‘halo’ region is included in the subdomains and after
some calculations on each subdomain, communication takes place to update the data
stored in the halo regions. The TDMA is parallelised by each processor sweeping over
the subdomain once, then updating the halo data. The conjugate gradient algorithm
is easily parallelised except the preconditioner, for which a block diagonal ILU precon-
ditioner is used. The use of block diagonal preconditioner means that each processor
calculates the preconditioner based only on the local data it has, thus the operation
is fully parallel. However by doing so the parallel conjugate gradient algorithm is no
longer mathematically equivalent to the sequential algorithm.



It is found that for some partitionings of the grid, the parallel CFD algorithm takes
a lot more iterations to converge, compared to the code running on one processor. This
happens frequently when the cell aspect ratios of the grid are large, and in particular,
when the domain is partitioned along the radial direction (also called y-split later on) of
along and thin pipe. In such cases the gain in going parallel is eroded by the degradation
of the convergence rate.

To give an extreme example, Table 1 shows the results of using the parallel code
on a simple pipe flow of 1 m long with a radius of 2.5 ¢m. The pipe lies parallel to the
z-axis. The flow comes in from one end of the pipe and out of the other end, having a
density of 1.29 and viscosity of 0.0001. The inlet velocity is 63.8 m/s, and the flow is
assumed to be laminar. The size of the mesh is 64 x 16, that is, the grid is divided into
62 equal sections in z-direction (plus two dummy cells) and 14 in y-direction (plus two
dummy cells). The domain is then split in various ways and assigned on to processors.
For example, processor configuration 2 x 1 stands for the partitioning (z-split) illustrated
by Figure 1.

- ---symmetry plane

communication
Processor 1 i ‘ Processor 2

| !

communication

Eactive cells Bhalo cells

Figure 1

From the table, it is seen that if the domain is split along the axial direction (z-
split), the number of iterations taken for the parallel algorithm to converge to a residual
of 107 on several processors is almost the same as the number of iterations taken
for the algorithm on one processor. However when the domain is split along the radial
direction (y-split), or when box type partitioning is used, the number of iterations taken
for the parallel algorithm increases considerably, in most case more than 3 times the
number of iterations for the sequential case. This phenomenon is also observed for more



complex problems and for finer meshes, as well as when parallel TDMA is used instead
of the parallel conjugate gradient algorithm to solve the pressure correction equations.
Although for flow with turbulence, the deterioration in convergence is not as dramatic
as that seen in Table 1.

Table 1

Number of iterations taken for the CFD code with different partitionings. Dimension
of domain: 1m x 2.5¢m.

Partitioning 1x1 2x1 4x1 8x1 1x2 2x2 4x2 1x4 2x4 4x4
Iteration Number 368 373 378 386 1200 1134 1162 5704 5614 5637

In the literature, little has been reported about this problem and its cause. Keyes
([2]) reported problems with y-split or box type split, and suggested that it was due
to the physics of the particular flow problems studied. Many parallel CFD papers in
the literature that worked on long and thin pipe-like geometries with high cell aspect
ratios used the z-split only and, in doing so, avoided the problem associated with y-
split. However, from the point of view of reducing the communication cost, box-type
partitioning is usually more desirable than partitioning along one direction only. Using
massively parallel machines, the number of processors may be more than the number of
cells along any one direction. Thus, to utilise the parallel computers, a box-type split
is unavoidable. Therefore it is very important to investigate the cause of this problem
and to come up with some remedies.

2. ANALYSIS OF THE EFFECT OF CELL ASPECT RATIOS

In the SIMPLE procedure, it is necessary to solve a pressure correction equation.
It is instructive to analyse the pressure correction equation, since it is a more difficult
equation to solve than the momentum equation. The pressure correction equation at a
cell P is of the form

cppp = cEpp +cwpy + cnpy + csps +d, (1)

where cg, cw, ¢y and cg are coeflicients that correspond to the east, west, north and
south faces of the cell respectively, and

cp = ¢cg + ¢w + ¢N + c¢s.

Assuming the mesh is very fine and equi-spaced near the control volume to be con-
sidered , it is found that the pressure correction equation (1) is approximately equivalent
to
P2 {(Ay)* (20 — plp — Pw) + (A2)*(2pp — Py — Ps)} = b, (2)
ap
with ap a coefficient of the momentum equation and Az and Ay the cell size along =
and y directions respectively. Clearly (2) has the same form as a discretised Poisson

equation.



If the cell aspect ratio a(= Az/Ay) is large, then because of the effect of squares
in (2),

CE cw 1

o~
~

—— =0
cp cp 2(1 4+ a?) ’

Q

N
—_

CN cs «a

cr ep 2lta?) 2

As a result, the coupling between north and south is very strong while that between
east and west is very weak. Assume the domain is z-split into two as in Figure 1.
If a block diagonal preconditioner is used, the coupling between the east and west
subdomains, that is, those coeflicients cg and cw at the processor interface, is essentially
ignored. This coupling is very weak anyway from previous analysis, thus its omission
will have little adverse effect on the convergence rate. However if the y-split is used, the
north-south coupling, which is very strong, is ignored when calculating the diagonally
blocked preconditioner. As a result the preconditioner is not a very good preconditioner
to the whole system. The usual fixed number of iterations of the conjugate gradient
algorithm therefore may not solve the pressure correction equation to a satisfactory
accuracy, and the whole CFD code converges slower. This is believed to be the main
reason for the deterioration of the performance of parallel algorithms with y-split or box
type splits experienced on a long and thin pipe. It is noted that the aspect ratio also
effects the momentum equation, however the effect is relatively small compared with
the pressure correction equation.

3. ANALYSIS USING POISSON EQUATION

Because the argument applies purely on the interface cells, it implies that if the
cell aspect ratio near the interface is not large, the parallel code should not show as
significant a deterioration in convergence rate. This is verified by numerical experiment.

Further tests with the use of parallel conjugate gradient algorithms on the solution
of Poisson equation, and subsequent eigenvalue analysis, also confirms that it is the large
aspect ratios of the interface cells between processors that degrade the performance of
the algorithms.

In one such experiment, a Poisson equation on a rectangular domain [0, X L] X
[0,Y L] in the (z,y) space is considered. The length of the rectangle along z is fixed to
XL =1 and the length along y varies between YL = 100 to YL = 0.001. The domain
is divided into 64 x 64 cells of equal size. The derivatives on the boundary are assumed
to be known. The right hand side of the Poisson equation is set by assuming that the
solution is p(z,y) = 2% + y* + zy. The number of iterations taken for the residual
to become less than 10™° is reported in Table 2, together with the cell aspect ratios.
Several partitionings are tested, including splitting the domain into two equal halves
with the line # = X L/2 (z-split) or with the line y = Y L/2 (y-split), and box type
split with two lines ¢ = XL/2, y = YL/2. The processor configuration corresponding



to these partitioning are 2 x 1, 1 x 2 and 2 x 2 respectively. As can be seen from the
table, with the increase of the cell aspect ratio, y-split takes more and more iterations
to converge, z-split generally takes less and less iterations, while the performance of box
type split usually follows the worst of that of the former two types of partitionings.

Table 2
The influence of changing domain size to the iteration number of parallel conjugate
gradient algorithm on the Poisson equation

XL YL Grid size Aspect ratio 1x 1 1x2 2x 1 2x 2
1 100 64x64 0.01 67 67 226 226
1 10 64x64 0.1 73 73 135 135
1 1 64x64 1 58 86 86 71

1 0.1 64x64 10 63 120 64 120
1 0.01 64x64 100 64 217 64 217
Table 3

The iteration number when the grid is stretched near y = 0.5. The aspect ratio shown
here is the cell aspect ratio near y = 0.5. The grid is uniform elsewhere.

XL YL Grid size Aspect ratio 1x 1 1x2 2x 1 2x 2
1 1 64x64 0.033 64 64 62 65

1 1 64x64 0.1 81 82 92 90

1 1 64x64 1 58 86 86 71

1 1 64x64 10 73 104 86 111
1 1 64x64 30 72 139 86 147

In order to confirm that it is only the aspect ratios of the interface cells that affect
the convergence of the parallel codes, in another test the Poisson equation with XL =1,
YL =1 and with mesh size of 64 x 64 is solved, but instead of using a regular mesh,
here the grid along z is still equi-spaced, but the grid lines next to the line y = 0.5 are
shifted, so as to give required aspect ratio of the cells next to the line y = 0.5. The
rest of the grid are regularly spaced. The results are listed in Table 3, where the aspect
ratios shown refer to that of the cells next to the line y = 0.5. Clearly with the increase
of the cell aspect ratios near the interface, even thought the aspect ratios of the cells
that are not next to the interface are close to unity, y-split still takes more and more
iterations compared to the sequential case. This confirms that it is the aspect ratios
of the cells next to the interface which affect the convergence of the parallel conjugate
algorithm relative to the sequential algorithm. The behavior of z-split and that of box
type split is also very easy to explain with the same argument.

4. SOME SOLUTIONS

The cause of the performance degradation of the parallel conjugate gradient algo-
rithm on grid with large aspect ratios readily give a possible remedy. Since it is the large



aspect ratios of the cells near the interface of the subdomains that affect the parallel
code, it is proposed to coarsen the grid near the interface, thus reducing the cell aspect
ratios, in order to improve the convergence.

The procedure is as follows. Denoting by a coarse grid a grid that is coarsened
near the interface where the cell aspect ratio is large. Whenever a pressure correction
equation is to be solved, the coarse grid equation is first formed and a few iterations of
the conjugate gradient algorithm are used to get a good approximation of the solution.
This is then interpolated to the original grid and a few CG iterations are applied again
to smooth out the interpolation error. The total number of CG iterations will be kept
the same as when coarsening is not used.

The coarse grid problem is formed as follows. Since the pressure correction equation
behaves like a Poisson equation, for the purpose of calculating the coefficients of the
pressure correction equation on the coarsened grid, it is assumed that the equation is
of the form

2 2
cx(e,) 5 + eales9) 5 E = ale)

After discretisation, the equation is of the form (1) with

CE — (C(})Te)fy’ (3(1)

cw = ((g%fy (3b)
B (c2)nAz

CN = W, (3¢)

s = 202 (3d)

Now if two cells A (at (i, j)) and B (at (i, j+1)) are lumped into one cell C, then
according to (3), assuming

(e1)2(Ay)* + (e1)2(Ay)® = (e1)d(AY)°
and
(c1)a(Ay)* + (e1)5(Ay)? = (e1)5(Ay)°,

the coefficients of the discretised equation on the coarse cell can be calculated using
that on the fine cells. That is,

(ce)® = (ce)? + (cE)®,
(ew)® = (ew)™ + (ew)?,

(en)P(6y)8

e =g



)C’ — (Cs)A((Sy)f
(8y)

If more than one cells are lumped to form a cell, the coefficients of the coarse cell can

(cs

be calculated in a similar way.

The source terms on a coarse cell are calculated by lumping the source terms on
the fine cells which form the coarse cell.

The idea is implemented and is found to improve the convergence of the parallel
algorithms for the Poisson equations as well as the convergence of the parallel CFD code
for pipe flow.

Table 4
Iteration number and CPU time of the CFD code with various processor configurations
and with or without coarsening on problem 2

Processor configuration Iterations Total cpu time Communication time
1x1 5740 3243 0

1x 2 5840 2067 309
1x2 coarsened 5420 1905 267
2x1 5680 1794 182
2%x2 5840 1253 335
2% 2 coarsened 5300 1167 320
1x4 5700 1547 519
1x4 coarsened 5480 1483 520
4%x2 5820 988 404
4x2 coarsened 5240 920 382
2x4 13300 2448 1065
2x4 coarsened 5480 1026 457
8x1 5700 933 358
4x4 5720 899 470
4 x4 coarsened 5460 871 445
8x2 6100 854 419
8% 2 coarsened 5320 765 381
16x1 5560 804 396

To give an example, turbulent flow in a sudden expansion pipe is considered. The
pipe is 1.0 m long and has a radius of 0.1 m. The inlet volecity is 64 m/s, density is
1.29 and viscosity 0.0001. A 64 x 32 equi-spaced grid is used. The results are listed in
Table 4.

As can be seen from the table, partitioning along the y direction tends to increase
the number of iterations needed for the algorithm to converge, although the adverse
effect is less dramatic as in the case of the laminar flow problem. Coarsening produces
some of the best iteration numbers and least CPU time.

Coarsening however has its limitation. If the cell aspect ratio is extremely large,
then lumping a few cells together will not reduce the aspect ratio by very much. How



to implement the coarsening procedure on irregular grid in 3D also needs further inves-
tigation.

5. CONCLUSIONS

The problem associated with high aspect ratios when working on parallel incom-
pressible CFD algorithms are analysed. The degradation in convergence comes only
when the domain is decomposed along a direction where the cell aspect ratios are high,
and is attributed to the strong coupling in the pressure correction equations between
subdomains.

Coarsening as a remedy to the problem has been shown to be useful.

Not reported here, the use of block correction ([3-5]) was also tested and found
to improve the convergence slightly. Overlapped block diagonal preconditioner was
suggested ([6]) to improve the pure block diagonal preconditioner, this and similar ideas
were also tried on the current problems but were found to make little improvement.

Currently the coarsening strategy is being compared with other techniques such as
the use of Schur complement type preconditioners ([7-8]).

REFERENCES
1. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, 1980.

2. D. E. Keyes, Domain decomposition methods for the parallel computation of re-
acting flows, Computer Physics Communication, 53 (1989), 181-200.

3. A. Settari and K. Aziz, A generalization of the additive correction methods for
the iterative solution of matrix equations, STAM Journal of Numerical Analysis, 10
(1973), 506-521.

4. S. V. Patankar, A calculation procedure for two-dimensional elliptic situations,
Numerical Heat Transfer, 4 (1981), 409-425.

5. B. R. Hutchinson, P. F. Galpin and G. D. Raithby, Application of additive cor-
rection multigrid to the coupled fluid flow equations, Numerical Heat Transfer, 13
(1988), 133-147.

6. G. Radicati and Y. Robert, Parallel conjugate gradient-like algorithms for solving
sparse nonsymmetric linear systems on a vector multiprocessor, Parallel Comput-
ing, 11 (1989), 223-239.

7. T. F. Chan and T. P. Mathew, The interface probing technique in domain decom-
position, STAM Journal of Matrix Analysis and Applications, 13 (1992), 212-238.

8. J. H. Bramble, J. E. Pasciak and A. H. Schaz, The construction of preconditioners
for elliptic problems by substructuring, Mathematics of Computation, 47 (1986),
103-134.



