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Abstract

In this paper low-order Newton methods are proposed that make use of

previously obtained second derivative information by suitable preconditioning.

When applied to a particular two-dimensional Newton method (the “LS
method”), it is shown that a member of the Broyden family of quasi-Newton
methods is obtained. Algorithms based on this preconditioned LS model are
tested against some variations of the BFGS method and shown to be much supe-
rior in terms of number of iterations and function evaluations, but not so effective

in terms of number of gradient evaluations.
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1. Introduction

Consider the unconstrained minimization problem

min f(z),

where f is a twice continuously differentiable function. This problem is usually
solved iteratively. Starting with an initial estimate (') of the minimum point,
each subsequent point z(¥+1) (k > 1) will be derived by searching along a descent
direction s(*) (s(k) is a descent direction if s(k)TVf(af:(k)) < 0), so that

gkt = (k) 4 \(R) 5(R) E>1.
Here A(*) is the step length satisfying line search conditions such as
f(m(k) + )\(k)s(k)) < f(m(k)) + pA(k)Vf(m(k))Ts(k) (1)

and

|Vf(m(k) + )\(k)s(k))TS(k)| <o Vf(a:(k))T.s(k), (2)

where 0 < p < ¢ < 1. We will denote f(*) = f(z(*)), (k) = V f(2(F)), Gk =
V2 f(2(9), 68 = p(k+1) _ 4(R) and 4(8) = gk+1) _ g(k)

Most of the methods for the unconstrained minimization problem are based
on minimizing quadratic approximations to the function f. They differ in the way
the search directions are calculated. Some typical such methods are described

below.

Newton methods set

S(k+1) — _(G(k—l—l))—lg(k—l—l)’ (3)

with necessary modifications to G(**1) if it is not positive definite, so as to make
s(kt1) a descent direction. These methods are very efficient in terms of the
number of iterations needed for convergence. However they require a knowledge

of the Hessian matrix G(**1)| and to solve the linear system (3) needs O(n?®)

multiplications per iteration.

Quasi-Newton methods avoid the use of second derivatives by maintaining
an approximation H(*¥t1) to the inverse of the Hessian (or the Hessian itself) and
setting s(k*1) = — g(k+1) g(k+1) Gince

1
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0

2



so quasi-Newton methods (which approximate (G(*))~1) require H(**1) to satisfy

the quasi-Newton equation

HED () _ 56, (4)

Clearly (4) does not specify the matrix H*+1) completely. One way of

specifying it is to assume (see Ref.1)

A CEN ONPWIOF OLSPNG (ONOF O IOWOL: {O)
. (5)
P HONONO O

and then use (4) to reduce the three parameters ¢1, ¢z, ¢3 to a single parameter

#%). This gives the Broyden family of updates

J:(ONONOL (ORI OFOL

(k1) _g(®) _
o =4 BT HRAF T g ®)

T 1 T
IPOINOLS ONOI NOMOLS

where v(¥) = 5(k)/5(k)T7(k) —H(k)'y(k)/'y(k)TH(k)'y(k). Clearly H**1) is symmet-

ric if H®) is, and if we denote

o8 = 6T BURIG(R) () (BT (R (k) — (BT (k) (R)

then H(*t1) is positive definite if H*) is, 5(k)T’7(k) > 0 and ¢*) > (%), Here
k) = b(k)z/(b(k)2 — alF) (k) is the value of ¢(*) that makes the right hand side
matrix of (6) singular. We note that under line search condition (2), we always
have 5(k)T’y(k) > 0.

Quasi-Newton methods are quite efficient, although they need to store the
matrix H**1) and each iteration requires O(n?) multiplications to update the
matrix. Among the members of the Broyden family, the BFGS update, given by
#*) =1, is thought to give the most efficient algorithm.

Conjugate gradient methods set
s = _g(R) 4 g(R)4(R), (7)

They need only vector storage, but generally need more iterations and function
evaluations than quasi-Newton methods. They also require an accurate line

search routine.

There are many formulae (see Ref.1) for 8*) in (7). However most of them

do not take into account the effect of inexact line searches. In an effort to find the



best %), Liu and Storey (Ref.2) suggested a method which we will refer to as
the LS method. It was found (Ref.3) that the method is actually a 2-dimensional

Newton method in span {—g(**1), s(¥)} and the new search direction is
_ -1
s = (glh+D) - 5()) (G<’°+1>) g+, (8)

where

T T
. gD GUHD) (k41) g (k+1)T G(k+1) 5 (k)
gEHDT QU B ()T Glk+1) (k)

and glktl) = (g(k+1)Tg(k+1), g(k+1)Ts(k))T are the Hessian and the gradient
of the restriction of f on the two dimensional affine subspace z(*t1) +
span {g(¥*1) s(¥)}. We notice that the direction s(**1) given by the LS method
is equivalent to that given in equation (2.4) of Nazareth (Ref.4). The method of

derivation is quite different however as are the implementations.

On quadratics with exact line searches, the two directions (7) and (8) are
parallel. Numerical results show that compared with conjugate gradient meth-
ods, the LS method generally needs fewer iterations to converge. The idea of

2-dimensional Newton methods can be generalized to m-dimensional Newton

methods (m > 3). The m-dimensional Newton direction in span {vgk), ... ,'vg,]f)}
is
(k1) — _V(k)(@(k+1))—1§(k+1), (9)

where V(*) = (vgk),...,vg,]:)) € Rrxm, gkt — V(k)Tg(IH'l) and G(*+t1) =
v (ET q(e+1)y7(k)

Study of the m-dimensional Newton methods in the subspace spanned by
the current gradient and some previous directions shows (see Ref.5) that as m in-
creases, fewer iterations are required for convergence. However the gain obtained

by reducing the number of iterations becomes smaller as m increases.

We believe that one of the problems with these m-dimensional Newton meth-
ods is that once the m-dimensional Hessian G(¥+1) = V(0" g(k+1) () g formed,
it is only used once to form the m-dimensional Newton direction (9) and then it
is discarded. If the second derivative information is stored in some way and used
in future iterations to precondition the Hessian, then it might help the algorithm
to converge more quickly. Of course in doing so, we have lost the advantage of

low storage requirement.

The result turns out to be very interesting. If the proposed preconditioning

technique is used on the 2-dimensional Newton method in span {g(*t1), s(¥)} a
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method that is very related to quasi-Newton methods is derived. If the approxi-
mation G*HtD§R) ~ 4(*F) is used to estimate the 2-dimensional Hessian, then we
get exactly a member of the Broyden family. Thus we have a new interpretation
of quasi-Newton methods. The proposed technique can also be applied to other

m-dimensional Newton methods.

There are strong similarities between the derivation of our methods and the
work of Nazareth (Ref.6, 7). The motivation here, however, is quite different
from that of Nazareth who is concerned with using BFGS or Newton methods

with limited storage by restricting them to some affine subspaces.

2. The Preconditioned m-dimensional Newton Method

Assume that the current point is z(**1), with the symmetric positive definite
matrix H(®) as the last approximation to the inverse of the Hessian, and the
last search direction is s(¥) = —HFg(k) TLet H*) — AQYAQ R AQNC
R™ ™ and nonsingular. Denote AQN. (Z(k)_l)T. Make a transformation of

variables

y= AQNS (10)

If we use the subscript “y” to denote the appropriate quantity in y-space, then

the gradient, Hessian etc. in y-space are

T
gy = 2" g,

By making the transformation (10), provided that H®) is a good approxima-
tion to (G**1))~1, the Hessian ng+1) = 7" @k+1) 7(k) will be “better con-
ditioned”, so that the unconstrained minimization problem in y-space will be
easier to solve.

Thus instead of minimizing f in z-space, we consider minimizing it in y-
space. Choose m independent vectors pgk), . ,pg,]:) in y-space, form a matrix
Pék) with these m vectors. Then the m-dimensional Newton direction from
y(k) = Z(F)=14(k) in the subspace span {Pék)} (for a matrix A, span {A} denotes
the range space of 4) is

_ -1
Sgk—l—l) _ _Py(k) (ng—l—l)) §§k+1)’ (11)
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where

~(k+1) __ )T ~(k+1 k
G = PTG Y

and
—(k+1 )T (k+1

are the Hessian and the gradient of the restriction of f on the affine subspace

y(**+1) 4 span {Py(k)}. We shall also denote

(k) _ k)T c(k
59 = BOTEY

and
~(k k)T _(k

gk—H) will not change if Py(k) is

Clearly the m-dimensional Newton direction s
replaced by another n by m matrix with the same range space. Thus without loss

of generality we can assume that P?’(,k) is orthogonal. Let ng) be its orthogonal
complement and let Q(F) = (Pék), gk)) € R™*™.

Back in z-space, the direction (11) is

S(k—l—l) _ —Z(k)P?Sk)(ng—i_l))_lP?Sk)TZ(k)Tg(k—i—l)
— _p®)(pBTGk+1) p()y=1 p(B)T g(k+1)

where we denote P(F) = Z(k)Pék).
ng—l—l)

Since we know the m-dimensional Hessian , we prefer not to discard
this information, therefore we make an estimate of the full Hessian G(**1) with

this information. Consider the matrix

~(k+1) (k)T ~(k+1) ~(k)
BT ~(k+1 k BT ~(k+1 k
BT GEIRE g Gyl

Since no curvature information in the range space of ng) is known, we will extend

the three submatrices of (13) involving ng) in some way. Noticing that if H(¥)
T

is a good approximation of G(**1), then G;k—H) ~ I, so Pék) ng+1)ng) ~ 0

T
and ng) ng—i_l)ng) ~ I, thus a convenient way is to assign

~(k+1)
)" GkQ*) (Gy 0) . (14)
0 I
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Then

~(k+1)y -1
Gyt 5 e (G070 0 gy
! 0 I
— P® (G P 1 piR BT,
In z-space this becomes
(G o0

(GH+D)1 x Z(BI Q)
0 I

) QBT 7 (k)7

— p(k) (p(k)Tg(k+1)p(k))—1p(k) + g _ p(k)p(k)T_

Therefore in z-space a good approximation to the inverse of the Hessian is

(@GP 0

F+) _ 7B Q) ( ) QBT Z(k)T

0 I (15)
— p(k) (P(k)Tg(k-l-l)P(k))—lP(k)T + g _ P(k)p(k)T_
If we assume from now on that ggk—'—l) € span {P?Sk)}, then (12) can also be
written as
s 1) — (k1) o(k+1) (16)

because for any d € span {P?Sk)}, (H(k)—P(k)P(k)T)Z(k)_Td = Z(k)ng)ng)Td =
0. The method given by (15) and (16) will be called the preconditioned m-

dimensional Newton method.

Note 2.1 If ng+1) is positive definite, then the matrix (15) is also positive
definite. Otherwise it is possible to modify the matrix @gk—H) to make it positive
definite, for example, by adding to it a positive definite multiple of the unit

matrix.

Note 2.2 In formula (15), if Py(k) in Q) is replaced by another orthogonal
matrix, R say, having the same range space, then Py(k) must equal R multiplied by

an m X m orthogonal matrix, and the resulting matrix H(*+1) will be unchanged.

Note 2.3 Denote H(*+1) = (ng—H))_l, then (15) becomes
H*D g

FO+) _ 7B Q)
0 I

) QBT Z(k)T
(17)

— p(R) ge+1) p(&)™ | (k) _ p(k)P(k)T’
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If we assume 7§k) € span {Pék)}, then (H) — P(k)P(k)T) ~*) = 0, thus
H(+1) satisfies the quasi-Newton equation H(*tDA(®) = §(¥) if and only if
p(k)f{(k-i-l)P(k)T,y(k) =6, or

(k+1)=(k) _ gk
A5k — §F), (18)
Note 2.4 If g§k+1), 73(,k) € span {Pék)}, then 5§k) € span {Pék)} (because
g§k+1) _ ’ygk) — A(k)égk)). Further assume G(*t1)§(k) = (¥) then
A(k+1)g(k+1) _ p(k)T (k+1) p(k) p(k)T s(k
GV = P G PR )

= P?Sk)Tz(k)Tg(k-i-l)Z(k)g;k)

or E§k+1)'7§k) = &(,k), thus by Note 2.3, under these two assumptions the matrix

(15) satisfies the quasi-Newton equation.

Note 2.5 For maintaining the positive definiteness of H**1) instead of
updating H*), it would be better to update its factorization Z(¥), If H(*¥+1) can
be factorized as L(k+1)L(k+1)T, then

g+ — 7(k+1) 7 (k+1)T

with (h41)
7(k+1) _ 7(k))(k) L 0 )
0 I
The matrix Q%) can be formed as follows. If pgk),pgk), . ,pg,]f) are m independent

vectors in y-space, to form an orthogonal matrix Pék) with these m vectors, the

matrix Q) = (Py(k), gk)) can be chosen as the orthogonal matrix such that

T k ek
QB (p{M, ..., R = i

O

where “x” denotes those elements of a matrix that may not necessarily be zero.
For example if pgk) = 7§k) = Z(k)T'y(k) and pgk) = 5§k) = Z(k)_15(k), then

/; )

NONTIORSORPIORFIONE KRN (19)

o o)



3. A Preconditioned 2-dimensional Newton Method

Having set up the framework for the preconditioned m-dimensional Newton

methods, we now look at a special case.

For m = 2, it is natural to try the preconditioned LS method, that is the

method in span {ggk—H), 5§k)}. However, in y-space, it is interesting that
T
g§k+1) = Z k)" g(k+1)
= Z(k)T,y(k) + Z(k)Tg(k)

(k) _ \(B) (k)" (k)

— ,7?(110) _ )\(k)ggk)_
Thus span {g§k+1), 5§k)} = span {7§k), 5§k)}. So by Note 2.2, the orthogonal
matrix Py(k) can be formed using 7§k) and 5§k) instead of g§k+1) and 5§k+1) without

affecting the final matrix H(**1), We choose to work with 7§k), 5§k) because
by doing so it is easier to see the relationship between the preconditioned 2-

dimensional Newton method and the Broyden family (6).

Orthonormalizing 7§k), 5§k) gives
T

(k) 65 4" B
k Y k Y

w_ | B [Pk
v (k) ’ T (k

[l ||5(k)||2 - (5§ ) ’)’g(; ))2
v k

sl

thus

plk) — (k) p(k) — <H(k)7(k) (k) g(k) _ b(k)H(k),Y(k))
y .

Ve® 7 B (k) Z p(k)Z (R)
By the form of P(*) and (15) we know that H(**1) must be of the form (5). If f
is a quadratic function, then by Note 2.4, H(**1) also satisfies the quasi-Newton

equation, so it must be a member of Broyden’s family. Therefore we have:

Theorem 3.1 The preconditioned LS method has the quadratic termination
property. O

We now analyse the method more carefully. Assume G(*tD§(R) = (k)
(which is true for quadratics) and denote T*) = 7(k)TH(k)G(k+1)H(k)'y(k). Then
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after some calculation we have

G+ = pB)T G+ p(R)

(k) o(B)? _ p(B) (k)
k) FONACECIOE (20)
(B k) R IR _ 07y |
) /a® (k) —p(B)F  c(R)(alk) (k) — p(k)?)

So
(k) k
A1) — (@gkﬂ))—l — ® ¥ , (21)
Valk) (k) _ p(k)? (a(k)c(k) _ (k) )T(k)
c(k) (bR T(R) — c(k)?) (k)

Clearly (21) satisfies (18) because
T
30 = Py = (Ve®,0)

and

T
k 2
59:%W%:<“) WW#PM“).

Ve®)’ Ve(k)

It was shown in Ref.8 that Broyden’s family of updates (6) can be written
in the form (17), that is,

) ALREI

) _ 7R Q) ( ) Qe Z(W7

0 I

with Q%) an orthogonal matrix satisfying (19) and

B(k) VaF R — bR
1) (%) (%)
(B c(F) — p(R)° () Bk (k) (k)
Vvake a™ 41 _|_¢(k) % _
(%) B o B(k)

(22)
Thus equating (21) and (22) we see that under the assumption G(k¥+1)~ (k) — §(k)
the preconditioned LS method is in the Broyden’s family with

" p(k)? B(K) (k)
P = T g T T R

(23)
o TORO)
="+ T
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This formula gives the “best” ¢(*¥) for the Broyden family (6), in the sense that
it corresponds to the preconditioned LS method. The LS method, as mentioned

previously, has fewer iteration counts compared with conjugate gradient methods.

If G+ §(k) = 4(k) and G(R+D) is positive definite, then it is easy to prove,
using the Cauchy-Schwarz inequality, that 5(¥)7(k) — B’ > 0, therefore ¢(*) >
#*) which means that the matrix H**1) for the preconditioned LS method is

a positive definite member of the Broyden family.

Conversely any method given by a member of the Broyden family can also be
viewed as a preconditioned LS method with the approximation G(¥)y(F) = §(¥)
and with proper choice of T(¥),

When we do not wish to use second derivatives to calculate T(*) in (21),
then we have to set the parameter T(*) in some way. The various choices of T(¥),

or equivalently of ¢(*¥) in (22), can be interpreted in the following way (see also

Ref.9).

Consider in y-space the problem in the 2-dimensional affine subspace y(**1)+

span{Py(k)}, with Pék) the orthogonal matrix formed with 7§k), 5§k). Then since

5§k), 7§k), g§k+1) € span{Py(k)}, so under the new coordinate system they become

i} . ORIV OP OO
5B _ p(b)T (k) _ (24)
Y v Ve®’ Ve®) ’
T
559 = P50 = (Ve9,0) )

and
a(k+1) _ p(k)T  (k+1)
9y - Py 9y ’
The starting point y(**1) becomes the orgin 7(**1) = 0.

Assume the function f in the 2-dimensional affine subspace is quadratic, then

the point that would be reached if the line search were exact is (see Figure 4.1)

_(k+1)T o(k)
s(h+1) _ (k1) 9y 9y 5(k)
y _y _(k)T_(k) Yy ?
oy~ Yy

and the gradient at this point is

—(k+1)T5(k)

~(k4+1) _ =(k+1) 9y ¥ (k)

9y =9y “(WT _(k) Ty
oy~ Yy
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(k+1)

At the point §¥*1), if a search direction 3y is generated using the gradient

at this point and the previous direction, in the form (7), then

~(k+1)T _(k)
=(k+1) _  =(k+1) i 9y Yy 5(k)
Sy = T “(k+1)T _(k) ¥
by Yy

(k) _ (k)T _(k)e(k)T
__(I_M) (I_M) S04
- “(K)T _(k (k)T _(k Y :

5" " 5" "

Assume the steplength along Egk—H) is taken as a(*¥), then the new point is

g2 = Glt1) 4 a(k)é'gk—i_l). However this point can be reached by searching

along the following direction Egk—H) from g(k+1),

S_gk+1) — kt2) _ gkt1)

(k) (k)T (k) _ (k)T _(k)e(k)T
_ 51(; )51(1 ) & [7_ 51(1 )’Y§ ) I— ’Yz(; )51(1 ) —(k) 26
=7 | wmr o T (T _(k) o | |9 (26)
5y Yy 5y Yy 5y Yy

= —F*+Dgk),

Figure 4.1 The function f in the 2-dimensional affine subspace

It is easy to verify, by substituting (24) and (25) into (26), that

B(k) Ja® ) — R
1) o® c(®)
N OF O oL O NN O RN O WON(S
i O) OO O
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Equating this formula and (22) gives

k)? k)?
(1o B g,
alk) e(k) alk) e(k)

Thus the BFGS update (¢(¥) = 1) corresponds to steplength a(®) = 1, the
DFP formula (¢(*) = 0) gives a(®) = b(k)z/(a(k)c(k)) <1 and the singular value
#F) = (k) gives al*) = 0.

4. Implementations of the Preconditioned LS method

In this section we will implement the preconditioned LS method and compare

it with the BFGS method.

As we mentioned in Note 2.5, for maintaining positive definiteness, it is
better to update the factorization of H(*) rather than H(¥) itself. Denote

700 = (9., 50 = 7900,

then (17) becomes

g (k+1)
g _ g0 [ H 0 78
0o I

and since P(*) = Z(k)Pg(,k) = (Egk), e ,25,’:)), so for m = 2, H(*+1) — (ng"i'l))_l

with

(BT A1) () (BT A(kt1) (k)
G(k+1) — pOT g+ p(k) — o TG 0o TG 2 e

However on general nonquadratic functions, Gglﬂ_l) may not be positive definite.

Thus to ensure the positive definiteness of H**1), some modification to the 2 x 2

matrix ng—H) is necessary when it is not positive definite. Assume we that we
_ 911 412
(k+1) _
912 922
into

1 ds d 0 1 0 dy + dod2  dyds
= , di,dy > 0.
0 1 0 d, ds 1 dyds dy

13
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Clearly dy = g3s if g22 > 0. But if go3 < 0, then one way of modification is
to let dy = t for some positive constant {. Unfortunately it is difficult to find a
suitable constant ¢ to reflect the magnitude of the 2—dimensional Hessian. Thus
we simply set dy = —ga2 if gaa < 0 (for the sake of simplicity we do not use other

more sophisticated options). We treat d; in a similar way. Thus we have

g22, if gas >0,
dy — { 22 22 (284)

—g22, 1if g22 <0,
ds = g12/d> (28b)

and

p g11 — dad, if g11 — dadj > 0, (28¢)
e C
' —(911 — dzdg) lf gi1 — dzd% S 0
1 0
g _ (B 0N | VA . (284)
Lis Lo B ds 1

NCAEA

The preconditioned LS method is thus given by:

Algorithm 4.1

Step 1 Let z() be a starting point, set Z() = I, k = 1. If ||g®| <
1075 max {1, ||z(*)||} then stop.

Step 2 Form the search direction s(*¥) = —Z(k)Z(k)Tg(k).

Step 3 Line search to get z(**1) = gk 4 X(k)4(k) — 5f ||g(k+1)|| <
1075 max {1, ||z(**1)||} then stop.

Step 4 Let Q%) be the orthogonal matrix such that

T
Q(k)T(Z(k)T,y(k)’ Z(k)_lé(k)) _ * 0 0 “ e 0 ‘
* x 0 ... 0

Let Z(k) = z(RQk),
Step 5 Form the 2—dimensional Hessian (27) (with finite differences) and fac-

torize it as in (28).

14



Step 6 Set Z(k+1) = (z§k+1), .. ,zgk—i_l)) with

Z§k+1) == Ellfgk) + —elzfgk), (29(1)

ng+1) == Ezzfgk) (29b)

and
(k1) (k1)

1] 1 )

1=3,...,n. (29¢)

Set k: =k + 1, go to Step 2.

To avoid excessive details, the algorithm given here is simplified. We refer
to Ref.8 for complete details including the generation of the orthogonal matrix
Q) There it was found that Algorithm 4.1 needs about 4n? multiplications per

iteration.

As stated in Ref.8, any method in the Broyden family can also be imple-
mented using Algorithm 4.1. Factorizing (22) gives H(Ft1) = LD [ (k)T
with

p(k)
FO) 0

L) _ (Ell 0

b1 £22> YOO 20 (0
O
b(k) (k) p(k)

(30)

We shall denote [PLS]| as the preconditioned LS algorithm using Algorithm 4.1
with L(*+1) given by (28), and [BFGS] as the BFGS algorithm using Algo-
rithm 4.1 with L(**1) given by (30) and ¢(*) = 1. We also tried an algorithm
[PLS-BFGS], that is, if G(**1) is positive definite, then L(**+1) is given by (28),
otherwise switch to BFGS by setting L(**1) to (30).

Both [PLS] and [PLS-BFGS| need two extra gradient evaluations to calculate

the 2-dimensional Hessian (27) using the following finite difference formula,

(m(k—l—l) + t(k)%(k)) — gUk+1)
(k) ?

G ZE) o 9 i=1,2,

where we take t(F) = 10_8/||2§k)||. Of course it is also possible to calculate (27)
using finite differences of function values, in which case five extra function eval-

uations are needed (see Ref.4).
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To reduce the number of gradient evaluations, we can use the approxima-
tion GU*+§R) ~ 4(k) wwhich gives (21). Factorization of (21) gives H(*+1) =
LD LD with

p(k)
—= 0

L) _ (zll 0 ) _ (B
L1y L2 \/a(k)c(k) _ (k)2 \/(a(k)c(k) — b(k)z)c(k)
b(k) e(k) (bR T(R) — c(k)*)p(k)

(31)
where T(*) = 7(k)TH(k)G(k+1)H(k)7(k). However, as (*) tends to the minimum
point, we have found in our numerical work that usually a(*)¢(*) — b®* 5 0 and
pRT(R) _ () 0, thus it is very difficult to calculate accurately the second

diagonal element of L{**1) using (31) because of round off errors. Qur implemen-

tation of Algorithm 4.1 using (31) therefore frequently gives erratic results. To
overcome this difficulty, notice that (20) shows that the second diagonal element
~(k+1) .
of Gy is
bR (pCR) (k) c(k)z)
922 = ) (@M B — p(B)?7) "

(32)

However, go3 = EZTG(’H'UEz can be calculated easily with finite differences. Thus
substituting (32) into (31) gives

b(k)
— 0
c(k)

(33)

L) _ (ﬁll 0

12 fzz) N a(B) (k) _ p(k)? 1
b(k) (k) \ 922

Since (33) corresponds to a member of the Broyden family with %) given by

(23), and the ¢(*) is “best” in our sense, so we denote the algorithm using (33)

1

as [BEST¢]. In the implementation, we actually took £33 = 1/(|g22])=.

As Shanno and Phua (Ref.10) found, initial scaling is usually beneficial
to the BFGS algorithm, thus we also tried the initial scaling versions of
the four algorithms, which we denote respectively as [PLS2], [BFGS2], [PLS-
BFGS2] and [BEST#2]. For the BFGS algorithm, initial scaling with &%) =
5(1)T7(1)/7(1)TH(1)7(1) (here HY) = Z(l)Z(l)T) corresponds to (see Ref.8)
replacing (29b) and (29¢), when k = 1, with

= e 4

and

252): £ 251), 1=3,...,n.
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For the other three algorithms, by initial scaling we mean replacing (29c¢)
when k = 1 with
A =/t V) i=3,... n.

The eight algorithms are implemented on an HP9000/870 computer with
double precision in FORTRAN. The line search routine satisfies the line search
conditions (1) and (2) with p = 107* and o = 0.9. If during the line search
the length of the interval in which the final step length is predicted to lie be-
comes less than 107!%, then the line search is assumed to fail. The initial step

length is always taken as one, except when k£ = 1, in which case we take it as

max{2, (EST — f(k))/g(k)TS(k)} where we set EST equal to zero.

We used the eight algorithms on the first 31 test functions of Moré et al.
(Ref.11). These functions are all sums of squares with the number of square
terms either as given, if a number is recommended in their paper, or set to 100.

Standard starting points are used.

Table 4.1 contains the results of the eight algorithms. The first column gives
the number of the test function, the second column gives the number of variables,
the third to the tenth columns contains “NI/NFE/NGE” for each algorithm on
each test function, where “NI” denotes the number of iterations, “NFE” the
number of function evaluations and “NGE” the number of gradient evaluations.
We use “F2” to denote failure due to line search, “F3” failure due to overflow of
functions (gradients). The last row of the table gives the totals of NI, NFE and
NGE. In calculating these totals, we do not count functions 6, 10, 14 and 17 on

which some algorithms fail.

From this table, we can see that in terms of NI and NFE, algorithms [PLS]
and [PLS-BFGS] are clearly better than [BFGS] and [BFGS2]. Algorithms [PLS2]
and [PLS-BFGS2] are even better. However, due to the extra gradient evaluations
needed in calculating the 2—dimensional Hessian, NGE for these four precondi-
tioned LS algorithms is higher than that for the two BFGS algorithms. The two
algorithms using the “best” ¢(*) are also quite good in terms of NI and NFE if
we compare their results on each problem separately with those of the two BFGS

algorithms. However because of the erratic results of [BEST¢| on problem 24,
the total NI and NFE of [BEST¢] is quite high.

To test the algorithms further, we tried them on functions 20 to 30 (on
which the number of variables is adjustable) and set the number of variables to
100 instead of 12. The results are in Table 4.2. Clearly the conclusions of the
last paragraph still apply. We also notice that now the results of [PLS]| and [PLS-

BFGS] are exactly the same. This is because during the iterations for solving
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each test problem, the 2—dimensional Hessian (27) remains positive definite,
thus the two algorithms are equivalent. In fact when solving the complete set of
31 test functions in Table 4.1, the 2—dimensional Hessian also remains positive

definite for most of the iterations.

We have also tried the algorithms on functions 20 to 31, with 12 variables.
But instead of using the standard starting point z(*), we tried 10z(}). The results
in Table 4.3 again show that in terms of NI and NF, the six preconditioned LS
algorithms are better than the two BFGS algorithms.

5. Discussion

In this paper we have introduced the preconditioned m-dimensional
Newton method. We have seen that any method in the Broyden rank-2
Family can be regarded as a preconditioned 2—dimensional Newton method in
span {g§k+1), 5§k+1)}, with the approximation G(*t1§(k) = (k) This gives us
an explanation of the nature of quasi-Newton methods. Numerical results on the
preconditioned LS algorithms show clearly that they take fewer iterations and
function evaluations than BFGS alghorithms, but that they take more gradient

evaluations than the latter.

Research is currently being carried out on preconditioned m-dimensional
Newton methods for mm > 3. There are many possibilities for the choice of

the m-dimensional subspaces. For example, with m = 3, one can choose span
(47, GV A0, (G IR, o pan (5, 69, 44°0).

In formula (13), after calculating ng—i_l)Pék), in fact three of the four blocks
are known, so the result of calculating these three blocks by finite differences and
assigning properly the fourth block deserves investigation. Note however that
the block in the bottom right-hand corner could not then be simply set to the

unit matrix since this may not preserve positive definiteness.
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